4. 調査方針検討

4.1 実施方針の検討

3. 現状分析の結果を踏まえ、水循環機構の把握に向けた検討方針について検討する。

「3.現状分析」で得られた水循環の課題を解決するため(図 4.1.1)、具備すべき条件を整理し、詳細な水循環機構の把握に向けた検討に向けた方針を検討する。

地下浸透→地下水→湧水といった水循環過程が問題となるため、地下水の流出経路や流出速 度・滞留状況、地下浸透量が湧水量に与える影響等を明確にする必要がある。

上記の水循環経路を的確に表現するには、地表水と地下水が相互に関連したモデルを選定する ことが不可欠となる。また、将来土地利用時の地下水位、湧水量を定量的に予測し、対策の評価 を行うには、以下に示す要件を兼ね備えたモデルが必要と考える。

【具備すべき要件】

- ・土地利用の変化や人間活動の影響を水循環に反映することが可能なモデル
- ・流域全体のみならず流域の細部においても水循環を表現することが可能なモデル
- ・表流水と地下水が相互に影響し、一体となったモデル(表流水-地下水連成数値解析モデル)
- ・水循環過程が物理的に表現されたモデル(将来予測)
- ・対策の評価が可能なモデル
- ・普天間飛行場内で遺棄・漏洩等によって土壌や地盤中、あるいは地下水中に存在する、有害 化学物質(汚染物質)の移流拡散を表現でき、かつ汚染源の逆解析が可能なモデル

図 4.1.1 水循環の課題

4.2 手法の検討

4.1 実施方針を踏まえ、普天間飛行場一帯の水循環機構の把握に適した手法について検討する。

4.2.1 手法(水循環モデル)の分類

近年、国内外の研究機関が中心となって、様々な水循環モデルが提案されるに至っている。表 層から地下水層への涵養量、河川と地下水層との水移動量等、空間的、時間的な水移動経路、移 動量を把握する必要がある場合に水循環解析が適用される。

総合的な水環境管理を実施する上では「水循環系の機構把握・評価」が要請されており、これに応えるものとして一連の水文過程を扱う水循環解析が必要となってきている。

「都市域における水循環の評価手法(社団法人雨水貯留浸透技術協会)」では水循環モデルを 空間表現の様式により①集中型モデル、②分布型モデル(斜面要素集合型、グリッド型)に分類 している。ここでは短期流出、長期流出を区分せず多様な素過程を対象としている水文解析モデ ルを水循環モデルととらえ、表 4.2.1 に水循環モデルの分類と代表的なモデルを示す。

	モデル	の分類	代表的なモデルの名称
	集中型 モデル	流域を一様な一つの計 算単位として扱う	EPIC,CREAMS,TANK
分布型	斜面要素 集合型	流域をいくつかの小流 域に分割し、それぞれを 計算単位とする。流域内 の地域的な流出特性を 反映できる。	HEC-1,KINEROS,RORB,SRM,SPUR-91, SWRRB,HSPF,NWSRFS,PRMS,SSARR,SWMM, UBC,XINANJIANG,MIKE11,MOUSE,NAM,HB V,TOPMODEL,SMPT(安藤・虫明・高橋モデ ル),SHER,土研改良 PRMS モデル
モデル	グリッド型	流域を四角または三角 形の要素に分割し、空間 的に詳細な流出機構の 追跡を行う。要素毎に流 出特性を表現できる。	AGNPS,WEPM,土研モデル1,土研モデル2, THALES,IHDM,SHE(MIKE SHE,SHESED), 京都大学モデル,小尻モデル,東大生研モデル, WEPM,GETFLOWS

表 4.2.1 水循環モデルの分類と代表的なモデル

我が国のみならず諸外国で提案・適用されている流出解析モデルの特徴を整理すると表 4.2.2 のとおりである。ここでは水循環経路毎の水分移動量を推定するモデルを水循環モデルと定義し たので、洪水のみを対象とする短期流出モデルはこれに含まれない。

同様に、地下水流れのみを対象とするようなモデルも含まれない。また、大気圏、水圏をも含 めた大規模な水循環モデルも提案されているが、ここでは、河川流域を検討対象に置くことから 陸水を扱うモデルに限定した。

表 4.2.2(1) 水循環モデルの比較表

対	象モデル		-	長期流	出の表現	が制約され	いるモデル		at at the second	水循環モデル (本調査の定義による) (期のみ 低水のみ 低水/高水両用																											
	No.	1	r 2	高水のみを 3	:対家とす 4	る短期で、 5	6	7	融 雪 期 の み 8	9	10	低水のみ 11	12	13	14	15	16	17	18	19	20	21	22	23	19 24	3水/高水 25	町円 26	27	28	29	30	31	32	33	34	35	36
コモデノ	ードNo. ル名(略称)	AM04 HEC-1	AM06 KINEROS	AT01 RORB	AM01 AGMPS	JP08 土研モデ	AT02 THALES	JP02 京都大学	AM10 SRM	AM03 EPIC	JP01 安藤・虫	AM09 SPUR-91	AM13 SWRRB	CA01 SLURP	AM02 CREAMS	JP04 タンクモデ	AM05 HSPF	AM07 NWSRF	AM08 PRMS	AM11 SSARR	AM12 SWMM	CA02 UBC	CN01 XINAN IIA	DM02 MIKE 11	DM03 MOUSE	SW01 HBV	UK03 TOPMOD	JP06 PLUMPモ	JP09 土研改良	JP07 土研モデ	DM01 MIKE	UK01 IHDM	UK02 SHE/SHE	JP03 小尻モデ	JP05 東大生研	JP10 WEPM	JP11 GETFLO
- , .	H (III)					12		モデル			· 明・高橋 モデル					N							NG				EL	デル	PRMSモデ	νl	SHE		SED	N	モデル		WS
	国別	米国	米国	オーストラリフ	r 米国	日本	オーストラリア	7 日本	米国	米国	日本	米国	米国	カナダ	米国	日本	米国	米国	米国	米国	米国	カナダ	中国	デンマーク	1 デンマー/	バスウェーデン		日本	日本	日本	デンマーク	7 革国	革国	日本	日本	日本	日本
ł	提案者	米国陸軍	米国農務	Monash大	: 米国農務	鈴木俊	Melbourn	立川譲	米国農務	米国農務	安藤義	米国農務	米国農務	国家水文	米国農務	菅原正巳	米国環境	米国国家	米国地質	米国陸軍	米国環境	British	河海大学	Danish水	Danish水	Swedish気	Lancaster	虫明功	深見和	吉野文	Danish水	英国水文	Newcasetl	小尻利治	虫明功	河原·末	登坂博行
		省工兵隊	省	学	省	郎、寺川 陽、松浦	大学	人、推葉 充晴	省	省	久・虫明 功臣・高	省	省	研究所	省		保護庁	気象サー ビス	調査所	省工兵隊	保護庁	Columbia 大学		理研究所	理研究所	象水文研 究所	大学	臣、ヘラー ト、日本工	· 彦、金木 城、寺川	雄、吉谷 純一、堀	理研究所	研究所	e大学		臣、ヘラー ト、日本工	次・賈・倪	
						達郎					橋裕																	営(株)	陽	内輝亮					営(株)		
低	水/高水 公粨	高水	高水	高水	高水	高水	高水	高水	低水	低水	低水	低水	低水	低水	両用 作 由 刑	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用
	<u>力</u> 規	型	型	型	型 型	<u>299</u> 户 型	<u></u> 型	<u>299世</u> 型	型	来于生	来下生	型	型	型	来下生	来于主	型	型	型	型	型	型	型型	型型	型	型	型	型	型型	<u>299下</u> 型	<u>299</u> 户 型	<u>299下</u> 型	<u>2991</u> 型	<u>2991</u> 型	<u></u> 型	<u>2221</u> 型	<u></u> 型
開発	目的 開 発経緯	河道、貯 水池、合	都市域上下水道、	流出計算 及び河	農地の流 出、土砂	実務での 洪水予測	低水 ・ 高 水両用の	流下経路 の特定、	森林山地 流域の融	農地の水 分、栄養	不浸透域 の流出機	牧場の生 態システ	農地流域 の水収支	土地利用 特性を考	ノンポイン ト汚染源	簡易な理 論で実現	水量及び 水質を対	流域水分 収支と河	洪水と日 単位の全	山地流域 を対象	都市域の 水量及び	融雪·雪 水·降雨	低水・高 水両用の	河川・河 口等の水	都市域、 配水管渠	地形、土 地利用を	流出寄与 の概念に	都市域の 水循環予	長期流出 を対象とし	大流域に 適用でき	流域の水 文特性の	山腹斜面 の地中	水文素過 程を物理	都市域を 含めた水	都市域の 水循環予	都市域の 水循環予	空気・水 の流れを
		流点等で の追跡計	遊水池等 での水の	道·遊水 池·貯水	生産、栄 養成分輸	に適した 分布型モ	分布·物 理型モデ	計算領域 の小さい	雪流出の 表現	成分及び 植物成長	構と土壌 の水分保	ムの表現	と植物の 成長	慮した流 出計算	負荷量の 評価	象の再現 性を向上	象とする 総合的な	道流出計 算	流域の水 文量を算		水質の計 算	の影響を受ける山	流出解析	量·水質· 土砂輸送	を対象、 水の流	考慮した 流出計算	対応した 物理的な	測。飽和· 不飽和浸	てGISを活 用した物	る実用的 な分布型	空間分布 を表現	流·表面 流·河道	式で表現 し解析	文現象と 水質・生	測。飽和• 不飽和浸	測。水と熱 輸送を統	基本とし て、熱・
		算	流れの計 篁	池等での 追跡計算	送の表現	デルの開 発	ルの開発	モデルの 開発		の計算	持特性を 付可						モデル		出			地流域の 洪水予測		の計算	れ、水質、 十砂移送		モデル	透の考慮	理的定数 分布型流	モデルの 開発		流の計算		態系への 影響評価	透の考慮	合的に解 析	汚染物質 ・ + 砂の
			<i></i>	A-240 HT 94				0.00														001110			を総合的				出モデル	0.00						21	流動を解
																									(二月平17日				两元								וער
	特徴	各小流域 に分割。	水の流れ に沿って	小流域区 分は10区	流域をメッ シュに分	/ メッシュ缶 に算出し	等高線を用いて流	三角形要 素網によ	標高別 ゾーンに	流域を均 一と仮定。	タンクモデル 定数を不	気候・水 文・植物・	土壌・植 物によっ	分割した 各小流域	流域を同 質と仮定。	観測値を 用いて各	モデルの 構造はモ	鉛直2層 に一定貯	ほぼ同質 の小流域	積雪量の 計算は、	各小流域 は鉛直方	流域を標高帯に分	流域内の 貯留能力	1次元モ デル。小	水文解析 では、雪・	各小流域 毎に上	流出寄与 域に降っ	物理的な 浸透機構	ほぼ同質 の小流域	流域をメッ シュに分	分布型モ デルの代	山腹斜面 はカスケート	各成分を モジュール化	表層は復 帰流を考	メッシュ毎 に物性値	メッシュ毎 に物性値	地表と地 下を完全
		降水から 損失を引	流出区域 と河道に	分まで。言 算対象は	+ 割。	た 流出を 河道への	域をメッ シュに区	る地形表 現。斜面	区分。 各 ゾーンの	鉛直方向 に数層に	浸透面積 率、透水	動物・経 済のモ	て小流域 に区分。	におい て、土地	時間ス テップは	タンクのパラ メータ(孔径	ジュール 型。	水能力を 与え、上	(HRU)に 分割。各	標高別バ ンドに区	向に上層 (不飽和)	割。 土壌 水分 により	の空間分) 布を統計	流域に区 分。	表面・根 層・地下	層・下層 の2つの層	た雨は直ちに表面	を取り込 んだタンクモ	(HRU)に 分割。各	割し、メッ シュ間の	表。流域 をメッシュ	状に接 続。斜面	し、それら を統合。	慮した一 次元特性	を設定。 表層、河	を設定、 メッシュ毎	に連成し た解析が
		いて流出 を算出。	数個に分 割。水の	単独事象 (1降雨)		入力とし、 河道追跡	分。飽和 不飽和水	要素に分 割。中間	算出した 流出を流	分割。	係数等の 物理定数	ジュールか ら構成。土	植物の成 長につい	利用毎に 鉛直水収	日または 短時間を	と高さ)を 同定。物		層の河道 流と下層	HRUの水 文成分の	分可。土 壌水分を	と下層(館 和)から棒	・ <!--</td--><td>的に考 慮。上層・</td><td></td><td>水の4つの 貯留タンク</td><td>の の 貯留 量</td><td>流として流出。寄与</td><td>デル。モ シ[*]ュール型</td><td>HRUの水 文成分の</td><td>水分移動 は鉛直方</td><td>に区分。 各水文素</td><td>流れは2 次元飽和</td><td>柔軟に発 展可能。</td><td>曲線を適 用。それ</td><td>川、帯水 層の3部か</td><td>に支配方 程式を設</td><td>可能。メッシュ毎に</td>	的に考 慮。上層・		水の4つの 貯留タンク	の の 貯留 量	流として流出。寄与	デル。モ シ [*] ュール型	HRUの水 文成分の	水分移動 は鉛直方	に区分。 各水文素	流れは2 次元飽和	柔軟に発 展可能。	曲線を適 用。それ	川、帯水 層の3部か	に支配方 程式を設	可能。メッシュ毎に
		出口まで 追跡計	流れの解			計算によ	り 分移動を	流と地表	域出口まで追跡計		に関連して設定	壊は鉛直 に最大8	ても考慮	支を計 質 鉛直	選択可。	理的根拠		基底流を	合成から	計算し河 道流出を	成。水質	b 流、地下 水に分	下層・深層の土壌		からを設 定	を算出。	域は地下	であり小	合成から	向の4層の モデルと	過程は物理式で表	と不飽和		下の3層は 線形貯図	: ら構成。支 配方母式	定し有限	支配方程
		算。	元。			における	降雨を対	合。	算。		将来予測	層まで区	-10	第。 <u><u></u> 」 方向には</u>	大8層まで	観性が低		層に通	水文量を	算定。	-1°	配。	オモデル		AL O		形により決	ル統合が	水文量を	河道モデ	現。	現。		型。都市	を設定し	<u>是</u> 力で,异 析。	し積分型
						二二二二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	歌。				ルトリ胆ら	万可。		雪層・衣 層・地下	万割り。	デルの構		9.0	异口。				で流田を 算出。				心。	叶肥。	昇口。	ルで表す。				下小坦で 考慮。	有限空分 で解析。		有限左方法で解
														水層に区 分。		造は明 確。																					杤r。
	降雨遮断	•	•	_	_	_	_	_	_		•	-	_	-	_	_	_	•	•	•	_	•	_		_	•	•		•	_	•	•	•			•	
	苏政府																																				
										•	•	•	•	空間補完式	•	•		•	•	•	•	-	•	-	•	•	•	•	Penman-		Penman-	Penman-	Penman-	熱収支法	-	Penman-	
-	窪地貯留	•	•	-	-	-	-	-	-	•	•	•	•	•	•	•	•	-	•	-	•	-	-	-	-	-	•	•	Monteith —	•	Monteith	Monteith	Monteith •	-	•	Monteith	•
	地表面流	•	•	•	•		•	•	•	•	Δ	•	•	•	•	Δ	•	•	•	•	•	•	•	•	•	•	•	Δ		•	•	•	•	•	•	Δ	•
		1次元キネマティック ウェーブ	1次元キネマティッ: ウェーフ	ヶ 貯留関数	経験式		1次元キネマティッ? ウェーブ	ク 1次元キネマティッ ウェーブ	/ 遅延時間	経験式	貯留関数	経験式	経験式	経験式、非線 形貯留関数	1次元キネマティッ: ウェーフ	貯留関数	ALMモデル	貯留関数	1次元キネマティック ウェーブ	線形貯留	非線形貯留	習 線形貯留	経験分離則	川 単位図法	非線形貯留	経験式	遅延モデル	飽和余剰分 流出		マニング則	2次元	1次元キネマティック ウェーブ	2次元	1次元キネマティッ ウェーブ	1 1次元キネマティック ウェーフ*	遅延時間	2次元
対象	陷下温诱	_	_	_	_	_		_		•		•						•				-					•		_		•		•				
素	P# 1 12.02					● 貯留関係	重力排水			貯留関数	特殊なタン	各層通過時	各層通過時	き フィリップ式	貯留関数	貯留関数		貯留関数	貯留関数		貯留関数	貯留関数		貯留関数	貯留関数	貯留関数	貯留関数	リチャート・式	B-157 FB #4	貯留関数	1次元不飽和	1	1次元不飽和	線形貯留	1次元不飽和	1次元リチャート	3次元
道程						(上段タン ク)				クモアル	間を考慮	間を考慮																X1 EI (9) 9X		浸透流		浸透流		浸透流	式	
(要	側方浸透	-	-	-	-		● 1次元キネマティッ	● 1次元キネマティッ	-		-	● キネマティックウェー	● +ネマティックウェ	● 非線形貯留	-	● 貯留開数	•		● 貯留関数	•	-		● 経驗分離目	● 貯留開数	● 貯留開数		-				-	•	-	● 線形貯留	● 1次元不飽和	● 1次元不飽和	● 3次元
素							ウェーブ	ウェーブ				プ貯留	ブ貯留							経験分離則												2次元へ飽 和と飽和流			浸透流	浸透流	
\sim	地下水	Δ	-	-	-	•	-			Δ	•	1		•	Δ	•	•	•	•		•	•	-	•	•	•	•	•	•	•	•	-	•	•	•	•	•
		逓減曲線法				下段タンク	7		逓減曲線	単独で考慮	タンク、不圧のみ	>		非線形貯留	地下水へ渡 養のみ	貯留関数		貯留関数	貯留関数		貯留関数	貯留関数		貯留関数	貯留関数	貯留関数		ダルシー則、ネッ ワーク	貯留関数	貯留関数	3次元		2次元	線形貯留	2次元	2次元	3次元
	河道漆	•				圧)	•		_			•						^									•		_		•		•				
	1.1751/10	単位図法、キネ	1次元キネマティッ:	ク 貯留関数	経験式	1次元キネマティ	ック 1次元キネマティッ	ク 1次元キネマティッ	7			経験式	経験式	経験式、非線			1次元キネマティック	4段貯留	1次元キネマティック	非線形貯留	非線形貯留	、河道、貯水	マスキンガ	1次元	1次元	経験式、マ	マスキンガ			マニング則	1次元	1次元キネマティック) 1次元	1次元キネマティッ	7 1次元	1次元	2次元
		マティックウェーフ	ウェーフ			ウェーブ	ウェーブ	ウェーブ						形貯留関数			ウェーフ		ウェーフ		キネマティックウェ ブ	ー モデ・ ル	4			スキンカム	4					ウェーブ		ウェーフ			
	水質	-	-	-	•	-	-	-	-	•	-	•	•	-	•	-	•	-	-	-	•	-	-	•	•	-	-	-	-	-	•	-	-	•	-	-	•
公開	劓/非公開	公開		公開	公開			非公開	無料公開		非公開		公開		公開	一般普及	公開	公開		公開	公開	公開	非公開	販売	販売	公開	無料公開	非公開			販売		公開	非公開	非公開	公開	販売
利便怕	生(パッケージ	0		0	0		Δ	×	0		×		Δ			Δ	0	Δ	0	0	0	0	Δ	0	0	0	Δ	×			0		0	×	×	×	×
必要)	ッフト) な計算機能	小	小	小	小	小	中	中	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	小	大	中	大	中	大	大	大
対象	力 速流域特性	全般	全般	全般	農地	全般	自然流域	自然流域	1 山地流域	自然流域	全般	自然流域	自然流域	全般	自然流域	全般	全般	全般	全般	山地流域	全般	全般	全般	全般	全般	自然流域	全般	全般	全般	全般	全般	全般	全般	全般	全般	全般	全般
谪	间电例	各地でトイ		オーストラリ	米国•仲	宣十川流	:	宙大感知	数多くの	米国•他	名座		米国•他		米国•	全国各地	米国•伽		米国•伽	米国•他	米国・カ		中国管	利根川		数多くの	袖戸市山	八王子	を用で広	祖父を藤	世界各地		各地で上	長良川	新河岸	海老川	国内で上
100	11-1-11	も地 くよく 使われて		ア・他で応	で応用	域		演習林白	風で応用	で応用	多 タウン		で応用		不回 ヨーロッパ で広田	王国日和	で応用		で応用	で応用	ホ国 パ ナダ'で応	;	江·琵琶	791879		風で応用	田川	ニュータウン、	用	流域と草	で利用。		く使われ	10,000	川、海老	14-671	く使われ
		611		用				奴孤璵							で応用						л		确沉或尚 時川					新西岸 川、黄瀬		木クム流 域	日本では 八王子、		(10		川、坂川、 箱根山地		(VS
																								1				Л			海老川支 川前原川				流域		1
	備考	洪水再			土地利	1		河道最大	前日の流	渴水評					施策によ				土地利用	流出の長				+		降水予			米国地質						<u> </u>		大規模な
		現、都市 水文解			用・施策などの変化	E .		12数に等 しい計算	重逓減部 を算出し	恤、地球 規模の気					るノンボイ ント汚染				の変化による流域	· 明観測、 PMF解				1		測、水収 支、気候			調査局の PRMSモデ								モアル計 算には並
		析、洪水 防御計算			による水 質への影			領域で可	加算	候変化分 析					源負荷量 の変化を				流出の変 化を解析	析、洪水 防御						変化影 響、地下			ルを改良し たモデルで								列計算環 境が必要
					響を解析										解析											水解析			ある								
	参考文献	: ① Com	puter Mode	els of Wate	rshed Hydro	ology Vijay	P. Singh, V	Water keso	ouces Publica	tions (USA	,1995) 🤇 😟)「分布型流	出モデルの	つ現状と課題	」推葉充晴	(京都大学	防災研究所	f) 水質源研	究センター	研究報告第	\$15号。																

③「赤葉見の床主と牛主」 出切切にはが、山海室 (1967)、④「肌咳赤霜葉モアルの掃菜に関する切先去買料」 広京部人子的次切先所、(19 注) 表中の「対象素過程(要素)」の項目の記号は次の通り。 ●:モデルで考慮している素過程。 △:一部簡略化して考慮。 - :考慮していない。

表 4.2.2(2) 水循環モデルの比較表

	対象モデル 長期流出の表現が制約されるモデル 高水のみを対象とする短期モデル									/				15 1										水循環モ	デル (本	調査の定義	義による)		200										
		No.		1	2	<u>高水のみ</u> る 3	を対象とす 4	<u> </u>	デル 6	7	融雪期のみ 8	9	10	低水のみ 11	12	13	14	15	16	17	18	19	20	21	22	23	低 24	:水/高水同 25	5月 26	27	28	29	30	31	32	33	34	35	36
		コード No.		AM04	AM06	AT01	AM01	I JP08	AT02	JP02	AM10	AM03	JP01	AM09	AM13	CA01	AM02	JP04	AM05	AM07	AM08	AM11	AM12	CA02	CN01	DM02	DM03	SW01	UK03	JP06	JP09	JP07	DM01	UK01	UK02	JP03	JP05	JP10	JP11
		モデル名 (略称)		HEC-1	KINERC	S RORB	AGMP	PS 土研モラ ル2	THALES	5 京都大学 モデル	SRM	EPIC	安藤・虫 明・高橋 モデル	SPUR-91	SWRRB	SLURP	CREAMS	タンクモデ ル	HSPF	NWSRF	PRMS	SSARR	SWMM	UBC	XINANJIA NG	MIKE 11	MOUSE	HBV	TOPMOD EL	PLUMPモ デル	土研改艮 PRMSモデ ル	土研モデ ル1	MIKE SHE	IHDM	SHE/SHE SED	小尻モデ ル	東大生研 モデル	WEPM	GETFLO WS
		国 別		米国	米国	オーストラリ	7 米国	日本	オーストラリン	7 日本	米国	米国	日本	米国	米国	カナダ	米国	日本	米国	米国	米国	米国	米国	カナダ	中国	デンマーク	デンマーク	マウェーデン	英国	日本	日本	日本	デンマーク	英国	英国	日本	日本	日本	日本
		提案者		米国陸軍 省工兵隊	米国農利	殇 Monashナ 学	大 米国農業	 鈴木俊 郎、寺川 陽、松浦 達郎 	メハボルンナ ĵ 学	 セ川譲 人、推葉 充晴 	米国農務 省	米国農務 省	安藤義 久·虫明 功臣·高 橋裕	米国農務 省	米国農務 省	国家水文 研究所	米国農務 省	菅原	米国環境 保護庁	米国国家 気象サー ビス	米国地質 調査所	米国陸軍 省工兵隊	米国環境 保護庁	UBC大学	河海大学	デンマー ク水理研 究所	デンマー ク水理研 究所	SWEDEN 気象水文 研究所	Lancaster 大学	虫明功 臣、ヘラー ト、日本工 営㈱	深見和 彦、金木 城、寺川 陽	吉野文 雄、吉谷 純一、堀 内亮	デンマー ク水理研 究所	英国水文 研究所	Newcasetl e大学	小尻利治 ら	虫明功 臣、ヘラー ト、日本工 営㈱	河原·末 次·賈·倪	登坂博行
	低水/高水			高水	高水	高水	高水	高水	高水	高水	低水	低水	低水	低水	低水	低水	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用	両用
		分類		斜面要素	斜面要	素 斜面要素	* 分布型	2 分布型	分布型	分布型	斜面要素	集中型	集中型	斜面要素	斜面要素	斜面要素	集中型	集中型	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	斜面要素	分布型	分布型	分布型	分布型	分布型	分布型	分布型	分布型
	П		洪水制御	****	****		•	•	•	•	米口土			米口王	米口王	米口王	•	•	*D±	<u>*□±</u>	*±±	<u>*1</u> ±	***	*D±	<u>*□±</u>	*°±	*D±	*D±	**** •	*°±	*±±	•	•	•	•	•	•	•	•
			平常流量								•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	自	1畑・林地及び緑地	生態系				•					•		•	•		•		•				•			•	•						•						í
	然流		熱環境																																	t		•	•
土	の保		洪水制御	•	•	•		•											•			•	•	•		•		•				•				,t			•
地利	全		平常流量											•	•				•			•	•	•		•		•				•				t			•
用の	14	旧・溜地及い湿地	生態系											•	•				•				•			•													
適			熱環境																																				•
化			洪水制御	•	•	•	•	•									•		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	盛土	・転圧の適正化	平常流量								•	•	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			生態系				•					•		•	•		•		•				•			•	•						•			•			
	公	覇・緑地の整備	平常流量								•	•	•	•	•	•	•		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			熱環境																										•							,	<u> </u>		•
			洪水制御																											•						ļ]	•	•	•
	雨水浸	透施設の普及	平常流量					_			-		•																	•						,]	•	•	•
$ \vdash$			熱環境				_																													I	⊢−−−	•	•
			洪水制御																											•						I	•	•	•
	雨水貯	留施設の普及	半常流量					_																						•						I	•	•	•
			水資源																																	l	i	-	•
-	1		烈環境																																			•	•
		「水道の並及	洪小刑御 正常法具																				•				•									•		•	•
対下	'	小道》自及	十市加重 上能玄																																		–	•	•
策水	<u> </u>		土憲宗																				•				•									_ _	 		
りの	合流式	下水道の水準向上	生態系																				•				•									ł	$ \longrightarrow $		
整備	処	理水の再利用	平常流量																				•													ł	•	•	•
			洪水制御																				•													t			
	流出抑	制型下水道の普及	平常流量																				•																i
	201	送北坡四旧港	洪水制御	•	•	•	•	•	•	•									•	٠	•	•	•			•	•		•		•	•	•	•	•	•	•	•	•
	γn]	1旦以修り/距進	生態系				•							•					•				•			•	•						•						
河川	-	間筋油の敷備	洪水制御	•	٠	•													٠							•													
の	"	∍>P18*/正洲	熱環境																																				
備	地	下河川の整備	洪水制御																																		\square		L
	環境	主眼の河川改修	生態系																														•				 		I
$ \downarrow$	1.1 1.	単本報告目11-1-2012	熱環境																																		µ]		
	地下相止・	海道物浸出水の防 氏減及び再注入	平常流量																																				
地下	地	下水脈の保全	平常流量																											•			•	•	•		•	•	•
水	地下	水揚水の適正化	平常流量																											•			•		•	<u></u> Т	•	•	•
の保			水資源																														•		•		•	•	•
全	反山地	一元	平常流量					•	•	•			•																•	•		•	•	•	•	•	•	•	•
$ \vdash$) 湧7	水の保全と活用	平常流量		-			_																						•			•	•	•	<u> </u>	•	•	•
$ \vdash$	水質派	原の環境利用	水資源					_																									•		•	•	•	•	•
-	河川・	御沼の浄化	生態系				-												•				•			•	•						•			•	<u> </u>		<u> </u>
-	ホイン	レンース対策	王態糸 止能の				•								•				•				•			•	•						•			•	 		<u> </u>
┝─└─	ランホイ	マアノーへ対東	生態糸				•					•			•		•		•				•			•	-						•				 		
		備考	6 10 1 1	_																																			1

参考文献 : ① Computer Models of Watershed Hydrology Vijay P. Singh, Water kesouces Publications (USA,1995)、②「分布型流出モデルの現状と課題」推葉充晴(京都大学防災研究所) 水質源研究センター研究報告 ③「水環境の保全と再生」虫明功臣ほか、山海堂(1987)、④「流域水循環モデルの構築に関する研究会資料」於京都大学防災研究所、(1997、12月)

4.2.2 水循環解析の目的

水循環解析の目的例を表 4.2.3 に示す。対象エリアにおける水収支や地下水位等の水循環に関 する基礎的な情報を得ることの他、地下水の流れの視覚的情報を得ること、さらには、緑地配置 (地下水涵養)等の施策評価の根拠となる情報を得ることが挙げられる。

当該地域の水循環解析の目的を以下に示す。

①基礎的な情報の取得:現況再現、地下水位、地下水流動などの情報を取得

②視覚的な情報の取得:地下水流動の状態を可視化

③将来予測・施策評価の情報の取得:将来の土地利用変化(跡地利用)の影響評価及び施策評価、気候変動による影響評価及び施策評価

解	析目的	概要
基礎	的な情報	・離散的な流域情報を水循環解析により補完し、地下水位、河川流量、地下水流動、
の取	得	水収支などの情報を得る。
視覚	的な情報	・解析結果を用いて、地下水の流線軌跡図や流向・流速ベクトル図等を作成し、地
の取	得	下水流動の状態を可視化する。
七体部位の担		・地下水の涵養策等を行った場合のシナリオを水循環モデルへ設定し、with/without
加下	計画の般	で解析結果を比較する。
观し	なる 同報 但	・得られた情報は、施策を実施するか否かの判断の他、合意形成を図るための資料
v)項X·	14	として活用する。
Z	感度	・水循環モデルの水文地質構造や透水性などのパラメータを変更することにより、
	分析	対象エリアの水文地質特性や水循環特性を把握する。
úh	将来	・気候変動モデルの出力結果等を水循環モデルへ設定し、将来の水循環を予測する。
TUZ	予測	

表 4.2.3 水循環解析の目的例

出典:国土技術政策総合研究所資料 水循環解析に関する技術資料~地表水と地下水の一体的な解析 に向けて~

4.2.3 水循環施策

跡地の将来像「みどり(歴史・緑・地形・水)の中のまちづくり」の実現に向けて、グリーン インフラを主体とした水循環施策を検討し、モデルに反映する手法を検討する(表 4.2.4)。こ れらの水循環施策の雨水浸透、雨水流出抑制、生物多様性、熱環境改善等の多様な効果を評価す る。同表に水循環施策の反映方法を示す。

部門	対策手法	設定手法
河川	 ・河川改修 	
下水送	・雨水貯留浸透施設(計画降雨×1.1)	雨水貯留浸透施設の貯留量・浸透量をモ
下小垣		デルに設定する。
	・校庭・公園・街路の雨水貯留浸透施	雨水貯留浸透施設の種別(浸透マス、浸
	設	透トレンチ等)と施設の貯留量・浸透量
	・ビルの雨水浸透対策	をモデルに設定する。
都市	 ・各戸貯留浸透(市民、事業者) 	雨水貯留施設の種別と施設の貯留量を設
		定する。
	・樹林保全、緑地整備	樹林、緑地等の土地利用に応じた浸透能
		や透水係数を設定する。
	・大山地区(タイモ)の水源保全	土地利用に応じた浸透能や透水係数を設
水資源		定する。
	・新規水需要への対応→地下ダム等	地下水層の一部を不透水設定する。

表 4.2.4 水循環施策と設定手法

(1) 河川・下水道部門

既存ストックの活用を基本とし、地域特性に応じた効率的・効果的なハード対策手法を検討する。現在、宜野湾市の下水道(雨水)の計画降雨強度は80.8mm/hr(1/10)となっているが、今後、気候変動を踏まえ1.1倍に見直される予定である(図 4.2.1)。

河川改修、下水道整備(雨水)を実施し、気候変動に伴う外力規模の増分を流域対策(雨 水貯留浸透)で対応する。

図 4.2.1 降雨量変化倍率の設定

(2) 都市部門

樹林・草地、公園・街路の雨水貯留浸透施設、各戸貯留浸透(市民等)を設定する。

出典:気候変動を踏まえた都市浸水対策に関する検討会

(3) 水資源部門

今後の新規用水として次が挙げられる。

①データセンター:データセンターとは、サーバーやネットワーク機器などのIT機器を設置・ 運用する施設である。企業のデジタルデータを保存する物理的な場所として、高度な情報化 社会を支える。機器を冷却するための水を確保する。

②植物工場:植物工場とは、安全な食料の供給、食材の周年供給を目的とした環境保全型の 生産システムである。一般に養液栽培を利用し、自然光または人工光を光源として植物を生 育させる。また温度・湿度の制御、二酸化炭素施用による二酸化炭素飢餓の防止なども行う。 これらの技術により、植物の周年・計画生産が可能になる。農作物のために水を確保する。

③シリコンバレー:シリコンバレーは半導体製造等のハイテク産業、とくにIT系巨大企業の 拠点やベンチャー企業が集中する経済地区である。半導体の製造には洗浄に使う豊富な水 が必要である。

4.2.4 解析結果

解析結果について、水循環要素に着目し、モデル上(各メッシュ)の水循環諸量の分布図や、 地下水のベクトル図、表流水・地下水の流れを示す流線軌跡図など、水循環過程を「見える化」 する手法を検討する。

(1) 地下水位等高線図

地下水位等高線により対象領域の地下水位の標高や地下水流向を把握することができる (図 4.2.2)。

出典:国土技術政策総合研究所資料 水循環解析に関する技術資料~地表水と地下水の一体的な解析に向けて~ 図 4.2.2 地下水位等高線図(福井県大野盆地の事例)

(2) 地下水ベクトル図及び地下水流動量分布図

地下水ベクトル図等により対象領域の地下水の流動状況を把握することができる(図 4.2.3)。

図 4.2.3 地下水ベクトル図及び地下水流動量分布図(愛媛県松山平野の事例)

(3) 流線軌跡図

流線軌跡図により地下水の流れを視覚化することができる(図 4.2.4)。

出典:国土技術政策総合研究所資料 水循環解析に関する技術資料~地表水と地下水の一体的な解析に向けて~ 図 4.2.4 流線図(福井県大野盆地の事例)

4.2.5 水循環モデルの選定

先述したとおり、普天間飛行場周辺地域において水循環機構の解明にあたって、表流水と地下水位が連携して解析でき、水循環施策が反映できる水循環モデルが必要となる。

数ある水循環モデルの中で、表流水と地下水を連動解析でき、物理モデルであること、適用実 績数、使用の可不可等を考慮すると、MIKE SHE、WEPM、GETFLOWS が挙げられる(表 4.2.5)。 以降に、MIKE SHE、GETFLOWS の概要を示す。

 比輔	交項目	モデル	MIKE SHE (デンマーク)	小尻モデル(Hydro-BEAM) (日本)		東大生産研モデル (日本)		WEPM (日本)		GETFLOWS (日本)				
	特	徴	流域をメッシュに分割。メッシュ毎に入力デー タ、パラメータを設定可能。各水文素過程を物 理式で表現。適用例が多い。	表層は復帰流を考慮した一次元特性曲線 7月。それ下の3層は線形貯留型。都市下水 考慮。	!を適 <道を	メッシュベースのモデル。メッシュ毎にパラ; タを設定可能。差分法による解析。	x	総合的な流域管理ツールとして開発された シュベースのモデル。流域における水と熱れ を総合解析。	.メッ 移動	総合的な流域管理ツールとして開発された> シュベースのモデル。流域における水、物質 熱移動を総合解析。地表と地下を完全に連 した解析が可能。	か む 成			
	概念図		RR ne Ref Ref Ref Ref Ref Ref Ref Re	ER T	17 THE	Нана су 6.2.97 8. у во лина, а у областивано. И во лина и во лина и во лина								
		降水	降雨、融雪の両方を考慮	降雨のみ	\bigtriangleup	降雨のみ	\bigtriangleup	降雨のみ	\triangle	降雨のみ	\triangle			
		降水遮断	Rutter モデルまたは Kristensen-Jensen モデル		-	葉面指数LAIの関数	•	RutterまたはNoihan-Planton モデル	•		-			
		蒸発散	Penman-Monteith 式または Kristensen-Jensen モデル	熱収支法	\triangle	可能蒸発散から算定 (土壌水分状能等を考慮)	•	Penman-Monteith 式 (表層における執収支を計算)	•		_			
水	流出	窪地貯留	土地利用別に考慮	土地利用別に考慮	•	土地利用別に考慮	•	土地利用別に考慮	•	メッシュ形状で表現	\bullet			
 仰 環 王		浸透·不 浸透域	メッシュ毎に不浸透面積率指定	小流域毎に不浸透面積率指定	•	メッシュ毎に不浸透面積率指定	•	メッシュ毎に不浸透面積率指定	•		-			
 希過 段		不飽和流	鉛直1次元 モデル ●	不飽和層の貯留特性	\triangle	Richards 式を用いた3次元不飽和 流モデル	•	一般化したGreen-Ampt モデルと1次元Richards 式		3次元モデル				
11		地下水	3次元モデル ●	飽和層の貯留特性	\triangle	2次元多層モデル		2次元多層モデル		3次元モデル				
	流出	地表面流	平面2次元 Diffusive wave モデル ●	非線形貯留地法・1次元 Kinematic wave モデル	•	2次元 Kinematic wave モデル		遅延時間で考慮	\triangle	平面2次元 Diffusive wave モデル	•			
	追 跡	河道流	1次元 Diffusive waveモデル/ 1次元 Dynamic Waveモデル	▶ 1次元 Kinematic wave モデル	\triangle	1次元 Diffusive waveモデル/ 1次元 Dynamic Waveモデル	•	Manning 式を用いた1次元 Kinematic wave network モデル	\triangle	平面2次元 Diffusive wave モデル	•			
人工系流量	導水 生活 農業 工業	用水 用水 用水	人工系流量は入力データ	入力ハイドログラフ	•	 流域内外からの導水 日・季節変動パターンを考慮 灌漑季節を考慮 井戸取水等を考慮 	 • • • • • • • 	モデルへの入力データ	•	モデルへの入力データ	•			
水	ポイン	·トソース	生活、工業排水●	生活、工業排水			_		_	生活、工業排水				
質	ノンホ	ポイントソース	自然地、都市域	自然地、都市域			-		-	自然地、都市域	\bullet			
찪	土地	利用	•											
策	貯留	浸透施設	貯留施設を考慮可能 △	2 貯留施設を考慮可能	\triangle	メッシュ毎に統合的に表現		メッシュ毎に物理式を利用		メッシュ形状で表現	•			
評価	下水	道の普及	境界条件として設定	境界条件として設定	•	境界条件として設定		境界条件として設定		境界条件として設定				
	加 水質改善対策 利 便 性 適 用 例		 ● GISソフトARC/VIEWと連携。データ処理 や結果表示は便利。商用ソフト(ソース コードは非公開) ● ● ● ● ■ ● ● ● 	 ソースコードは非公開 インターフェイスはない 国内の長良川等、多数適用。 	•	GISソフトARC/INFOを用いている。 ソースコードは非公開 国内の新河岸川、海老川等		GISソフトARC/VIEWを用いている。 ソースコードは公開予定。 国内の海老川等		商用ソフト(ソースコードは非公開) 国内で多数適用	-			
)注.	総合	· 評 価	物理モデルであり、水循環・物質流動を同 ーモデルで解析できる。地表と地下を連 動解析。誰でも使用可能(購入)。	水循環・物質流動を同一モデルで解析で きるが、不飽和流、地下水流が物理モデ ルでない。 <u>地表と地下を連動解析できな</u> い。モデル入手不可。	X	地表と地下を連動解析。物質流動を同一 モデルで解析できない。 <u>モデル入手不</u> 可。	×	地表と地下を連動解析。物質流動を同一 モデルで解析できない。今後、モデルが 公開される予定である。誰でも使用可能。 適する ×・不適)	0	物理モデルであり、水循環・物質流動・熱 流動を同一モデルで解析できる。地表と 地下を完全に連成した解析が可能。誰で も使用可能(購入)。	0			

表 4.2.5 水循環モデルの選定表

4.2.6 MIKE SHE (水循環モデル)の概要

MIKE SHE の概要を以下に示す。MIKE SHE は、ヨーロッパ共同体委員会の補助金を受け、 デンマーク水理研究所、イギリス水文研究所、フランスのコンサルタント会社の三者によって開 発されたモデルである。水文、環境、生態、気象等の分野で世界的に幅広く利用されている。

(1) モデルの構成及び計算手法

MIKE SHE はメッシュベースのモデルであり、計算に当たって流域全体を水平方向には直 交するメッシュに、鉛直方向には柱状の複数の土壌層に分ける。分割されたブロック毎に、 降雨などの観測値と透水係数などのパラメータ値を与えて、流域全体における水の流れを解 析する。

MIKE SHE は、図 4.2.5 に示すように、遮断・蒸発散(ET)、表面流・河道流(OC)、不 飽和流(UZ)、飽和流(SZ)、帯水層 と河川との水交換(EX)、融雪(SM) の6つの部分から構成され、水循環過 程をほぼ漏れなく表現している。水移 動モジュールでは各部分が独立に計算 ができ、それぞれの最適な時間スケー ルに合わせた時間ステップで計算し、 共通の時刻で全ての計算結果を更新す るように設計されている。これにより 長時間の計算でも効率よく計算ができ るようになっている。水循環過程のモ デル化は次のように行われている。

図 4.2.5 MIKE SHE の概念図

1) 遮断と蒸発散(ET: Interception-Evapotranspiration)

植生による遮断と蒸発散量の計算には2つの方法が準備されており、選択することがで きる。

選択1では、遮断計算に修正 Rutter 法を用い、植生の遮断貯留量、地表面に到達する 降雨量等を計算する。また、実蒸発散を Penman-Monteith 法により推計するとともに、 可能蒸発散は気象と植生データから直接推定する。

選択2では、葉面積指数(LAI)と遮断貯留能力の関数により、植生の遮断貯留量、地 表面に到達する降雨量等を計算する。

降雨量を簡単な水収支法により計算する。実蒸発散量は土壌水分状態を考慮し、 Kristensen-Jensen 法によって可能蒸発散量から算出する。

算出した蒸発量は水分損失として地表面の節点に与える。また、蒸散量は損失として根 層の存在する各節点に分布させる。

2) 表面流と河道流(OC: Overland-Channel Flow)

St. Venant 方程式を簡略化した diffusive wave モデルと連続の式により表面流を記述 する。河川流は、dynamic wave/diffusive wave/kinematic wave モデル(3モデルを選択 できる)と連続の式により記述される。表面流は2次元モデル、河川流は1次元モデルで 表している。表面流の解析では、河道までの流下過程における水の蒸発と浸透を考慮して いる。多くの場合、河川表面積は流域全体面積と比べて小さいため、河川はグリッドの辺 に沿う線として、また河川の節点はグリッドの節点と一致するように取り扱われている。 方程式は陰的差分法で離散化されている。

不飽和流(UZ: Unsaturated Zone)

地下水函養や地表水と地下水とのやりとりは通常不飽和層を通して行われるため、不飽 和流の計算はモデル上の重要な部分である。不飽和土壤層における水の流れは、1次元 Richards 方程式を用いて表現している。さらに、根の発達する表層では根による土壌か らの吸水を考慮している。一般に地表面での境界条件はフラックスで与えるが、地表面で 湛水が発生する場合には、水位を指定する境界条件に変える。鉛直下方の境界は地下水面 とし、一定の正圧を与えている。なお、地下水面の位置が場所的にも時間的に変化するた め、不飽和流の連成解析は繰り返し計算となる。

4) 飽和流(地下水流)(SZ: Saturated Zone, Groundwater Flow)

地下水計算は水循環に大きな影響を及ぼす部分と位置付けられる。一層の帯水層の場合 には2次元モデルを多層の帯水層の場合には3次元モデルを用いる。基礎方程式は差分法 で離散化され、修正 Gauss-Seidel 法を用いた繰り返し計算によって解かれる。完全な3 次元流れの場合では帯水層を3次元的に分割するが、流れを2次元や準3次元で近似でき る場合には、透水性、難透水性等の地質構造に従い帯水層を区分する。準3次元の場合は、 準一様流を仮定し水頭の鉛直方向の変化は考慮しない。また、地下水の計算では、不飽和 層や河川水との水のやりとり、井戸による揚水・注水、敷説パイプによる排水等のモデル を組み込んでいる。このモデルでは地下水帯水層の非均質性や透水係数の異方性を考慮す ることができる。

5) 帯水層と河川の間の交換(EX: Aquifer-River Exchange)

ダルシーの法則を用いて帯水層と河川水とのやりとりを表現する。河川と帯水層の連接 状況として次の2つの場合を取り扱うことができる。1つは、河床と地下水帯水層が直接 接している場合であり、他の1つは、河床と地下水層の間に透水性の低い堆積層が存在す る場合である。

河川水に対して地下水位が高い場合には河川へ流出し、地下水位が低い場合には河川水 は地下へ涵養される。MIKE SHE は複雑な河道断面でも両者間の水移動量を計算できる。

6) 融雪(SM: Snow Melting)

融雪計算には熱収支法あるいは簡単な積算温度(degree-day)法を選択できる。

(2) 支配方程式

MIKE SHE は流域モデル(表層、不飽和層、地下水層)及び河道モデルから構成される。 また、同モデルは流域をグリッドに分割し、鉛直・水平方向の水移動量を算出しつつ、河道 (一次元不定流モデル)との水移動量を計算する。MIKE SHE の流域モデル(表層、不飽和 層、地下水層)及び河道モデルに適用されている支配方程式を以下に示す。

- ・表層モデル : 平面 2 次元 diffusive wave モデル
- ・不飽和層モデル:1次元 Richards 方程式
- ・地下水層モデル:平面2次元/3次元地下水流動モデル
- ・河道モデル : 1 次元 dynamic wave/diffusive wave/kinematic wave モデル

1) 表層モデル

表層モデルは St.Venant 方程式を簡略化した平面 2 次元 diffusive wave モデルと連続 の式により表面流を算定する。表層モデルの支配方程式は次のように表現される。降水量 が不飽和層の浸透能を越えた場合に表面流は発生し、河道までの流下過程における水の蒸 発と浸透を考慮している。

·連続式

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(uh) + \frac{\partial}{\partial y}(vh) = i \qquad (4.2.1)$$

·x 方向運動方程式

$$S_{fx} + \frac{\partial}{\partial x} (Z_g + h) = 0$$

$$S_{fx} = \frac{u^2}{K_x^2 h^{4/3}}$$
.....(4.2.2)

·y 方向運動方程式

$$S_{fy} + \frac{\partial}{\partial y} \left(Z_g + h \right) = 0$$

$$S_{fy} = \frac{v^2}{K_y^2 h^{4/3}}$$
.....(4.2.3)

ここに、Zg: 地表面標高(m)

h:水深(m)

u,v:x,y 方向の流速(m/s)

i:単位面積あたり流入量[降雨量-浸透量](m/s)

Sfx, Sfy: x,y 方向の摩擦勾配

Kx, Ky : x,y 方向の粗度係数(m^{-1/3}s)

図 4.2.6のような周囲4つのグリッドからの水収支により次ステップの水位を算定する。 グリッド間の流出量は(4.2.7)式より算出する。

$$I = i\Delta x^2, \quad \Sigma Q = Q_N + Q_S + Q_E + Q_W$$

図 4.2.6 コントロールボリュームにおける水収支

2) 不飽和層モデル

不飽和層における水の流れは、1 次元 Richards 方程式を用いて算定している。不飽和 層モデルの支配方程式は次のように表現される。さらに、根の発達する表層では根による 土壌からの吸水を考慮している。一般に地表面での境界条件はフラックスで与えるが、地 表面で湛水が発生する場合には、水位を指定する境界条件に変える。

・1 次元 Richards 方程式

ここに、θ:体積含水率

ψ:吸引圧(cmH2O)

K:不飽和透水係数(m/s)

S:根からの吸収量(1/s)

C:比水分容量

図 4.2.8 鉛直方向のグリッド分割

3) 地下水層モデル

地下水層における水の流れは、平面2次元及び3次元地下水流動モデルを用いて表現している。一層の帯水層の場合には2次元モデルを、多層の帯水層の場合には3次元モデルを用いる。3次元地下水流動モデルの支配方程式を次式に示す。

対象流域では不圧地下水の地下水流動を対象としているため、2次元地下水流動モデル を適用する。帯水層においては不飽和層からの涵養量、河川への流出量、河川からの浸透 量、揚水量の影響を考慮する。

・3次元地下水流動モデルの支配方程式

- ここに、Kxx,Kyy,Kzz: x,y,z 方向の透水係数(m/s)
 - S:比貯留係数
 - h:带水層水頭(m)
 - Q:単位面積当たりの涵養量、揚水量等の地下水流動量(m/s)

MIKE SHE では地下水流動モデルを差分法(陰解法)を用いて解く。差分法では地下 水流れの偏微分方程式を空間と時間で離散化した差分式に置き換える。帯水層の上面から 底面まで伸びた極めて小さなコントロールボリュームについて、図 4.2.10 のように隣接 する微小体からの4つの流入(流出)と上面からの揚水(涵養)Qが存在すると考え、連 続式とダルシー則を適用し、水収支を考えることによって(4.2.10)式の連続方程式が導か れる。各グリッドの連続方程式はコントロールボリューム間の流入出量がグリッドの貯留 に関する時間的変化に等しいことを意味する。この水収支に基づく有限差分近似により、 次式が導かれる。

図 4.2.10 コントロールボリュームにおける水収支

・地下水層と河川間の交換

地下水の計算では、不飽和層や河川水との水移動、井戸による揚水・注水、敷説パイプ による排水等のモデルを組み込んでいる。ここでは地下水層と河川間の交換について説明 する。

地下水層と河川との間の流れは、(4.2.11)式で表現される。ここで、 は河道と地下水層 との抵抗係数であり、次式により求められる。

$$Q = \Delta h C_{x-river}$$

$$C_{x-river} = \frac{1}{\frac{ds}{C_i \cdot da_i \cdot dx} + \frac{1}{C_{i,river} \cdot W_i \cdot dx}}$$
.....(4.2.11)
C_{x-river} = \frac{1}{\frac{ds}{C_i \cdot da_i \cdot dx} + \frac{1}{C_{i,river} \cdot W_i \cdot dx}}
Class C_{i,sz-river} : i 層と河道の間の抵抗係数(m²/s)
C_i : i 層の透水係数(m/s)
C_{i,river} : 河道の漏水係数(l/s)
da_i : i 層の厚さ(m)
dx : 飽和層のグリッドサイズ(m)
ds : 平均流れ距離 (グリッド中心と河道幅の 1/4 までの距離)
W_i : i グリッドにおける潤辺、 $l_{i,v} + l_{i,h}$ で近似(m)

図 4.2.11 地下水一河川水計算模式図

地下水位と河川水位差は、地下水位により次式で表わされる。地下水位が河床標高 br よりも低下すると流入出量は地下水位と無関係となる。

ここに、**Z**bot:河床標高

hi:地下水位 hriv:河川水位

図 4.2.12 河川涵養と浸漏

4) 河道モデル

河川流は、dynamic wave/diffusive wave/kinematic wave モデル(3モデルを選択できる)と連続の式により河道流を記述する。diffusive wave の場合、河道モデルの支配方程式は次のように表現される。

·連続式

·運動方程式

ここに、A:河積(m²)

U:流速(m/s)

qL:単位長さ当たり流入量(m²/s)

Sf:摩擦勾配

Zo:河床高(m)

K:粗度係数(m-1/3s)

図 4.2.13 河道モデル図

・表面流の流入

表面流の流入は次式により算定される。表面流の水位が堤防高を越えた場合に、表 面流は河道へ流入する。

ここに、ZB:堤防高 Z1,Z2:左右岸の地盤標高

h : 水深(m)

K:粗度係数(m-1/3s)

図 4.2.14 河川涵養と浸漏

4.2.7 GETFLOWS (水循環モデル)の概要

GETFLOWSの概要を以下に示す。このモデルは、表流水と地下水を完全連成で一体的に解析可能な三次元水循環モデルであり、地表と地下の連動性の表現力が高い。モデルの概要を図 4.2.15 に示す。

地圏の任意地点への降雨入力は、蒸発散により気圏に戻る分と、液相状態の地表流と地下水涵 養(あるいは地下水湧出)とに振り分けられる。地下水涵養はさらに地下浅部の不飽和鉛直浸透、 不飽和側方流、飽和浸透流などに分けられる。そのほか、水底(河床・ため池・水田など)から の浸透、逆に地表に向けた斜面・谷筋・河床・湖沼・海底からの湧出がある。このような、地表 水と地下水の往来は、場所ごとの地形条件、地質条件、地下状態(水分状態や水理ポテンシャル の状態)に強く依存している。

図 4.2.15 水循環モデルの概要

(1) 三次元水循環モデルの理論

以下に、支配方程式、地表水、地下水の完全連成手法等を示す。

1) 地表と地下の流れの基本思想

地表付近の地表水と地下水の流れは図 4.2.16 に示す流れとして分類する。地圏に小さ な直方体領域を考えたとき、その6面を通過する流れが各々の面で異なるものとしてモデ ル化を行うことにより、地表と地下を切れ目無く自然に表現できることになる。

図 4.2.16 地表付近の水の動き

- ・降雨、蒸発散については、ソース項*1として扱う。
- ・地表流れは開水路流れ(マニング型^{*2}の乱流状態の速い流れ)としてモデル化され、地 下水の流れは、浅部から深部まで含めて2相ダルシー流れ^{*3}(層流状態の遅い流れ)と して包括的に記述できる。
- ・両者をつなぐ流れ(涵養と湧出)は、2 相ダルシー流れとして考えることができる。川の流れはマニング型で近似されるが、同時に起こる河床からの浸透や地下からの湧出はダルシー型となる。

このように空気と水の2相流れ、すなわち地表流と地下浸透流を同時に扱うことを可能 とする統合型水循環解析^{*4}では、マニング型の地表流を多相ダルシー型非線形流れ^{*5}の 枠組みの中に同一形式で取り込むことで連成した解析を可能とするものである。

【参考】 飽和・不飽和地下水解析と2相解析について

飽和・不飽和地下水解析と2相解析の違いについては以下のとおりである。

地下水流れの解析に一般的に使われる飽和・不飽和地下水解析とは、不飽和帯において は空気は存在し、水の流れに干渉するが、空気自体の流れは考えないとするものである。 実際の解析では、未知量は圧力水頭(大気圧をゲージ圧0とする)として、飽和している 場所では0以上であり、圧力水頭が負(これは大気圧から毛管圧力を引いたものに相当) なら不飽和であると考え、その値に応じて飽和度を求め、さらに飽和度から相対透水係数 を求めて、水の流れに対する空気相の関与を表現する。この方法での制約は、水と接触す る空気相の圧力は常に一定(一般にはゲージ圧0の状態)、すなわち空気相は地下水面付 近に存在し決して被圧しないことを仮定していることである。

一方、2相解析は、地下の水理現象を液相としての水と気相としての空気の置換現象と して両相を同等に扱うもので、一方の侵入・排出は必然的に他方の排出・侵入あるいは圧 力変化による両相の収縮・膨張を伴うものと考える。これは、降雨の地表浸透時の空気の 地表への排出、地下水面の低下による空気の引き込み、急激な水の浸透による地中空気の 閉塞・被圧などの広範な水理現象を捉えることが可能である。なお、飽和・不飽和解析は、 2相解析で気相圧力を常にゲージ圧0として固定した特殊な場合に相当する。

- ※1:基礎方程式の右辺に記述され、物理的には外部から加えられた力などの発生源(ソ ース)の意味を持つ項を示す。
- ※2:マニングの平均流速公式で表現できる流れ
- ※3:ダルシー則で表現できる空気と水の2相の流れ
- ※4:降雨から地下への浸透、地表面流動、河川への流出を一連のシステムとしてとらえた統合解析。一般には、地表流は開水路流れの基本方程式の近似形、地下水に関しては、いわゆる飽和・不飽和浸透流解析の基本方程式を用いて個別に解析され、これらを統合した結合解析を示す。
- ※5:ダルシー則で表現できる、地表付近の不飽和領域から地下深部の飽和領域までの非 線形性を有する空気と水の流れ

2) 地表流の流体理論

河川や山肌を流れる地表水流動は、開水路流れとしてモデル化される。いま、図 4.2.17 に示す一様斜面の開水路を流れる水塊(水流の横断面 A,B 間の水塊)の挙動を考える。水 路幅に対して水深は十分小さいものとすると、鉛直方向に平均化した浅水流近似を適用す ることができる。水流の駆動力は地形勾配及び水深勾配であり、これに底面から作用する 摩擦力や系外との出入りを付与すると、運動方程式は次のように表される。

$\beta \frac{1}{g} \frac{\partial v_x}{\partial t} = \frac{\partial \xi}{\partial x} - \frac{\partial h}{\partial x} \cos^2 \theta_x$	$-\frac{\partial h_{fx}}{\partial x} - \frac{\alpha}{2g} \frac{\partial v^2}{\partial t} - \frac{P_r v_x}{gh} \qquad \dots $
ここで、	
$ heta_{x}, heta_{y}$: 流動方向毎の斜面勾配 [-]
h	:水深 [L]
$h_{\scriptscriptstyle fx},h_{\scriptscriptstyle fy}$: 流動方向毎の摩擦損失 [-]
V_x, V_y	:水深で平均化した流動方向毎の流速 [LT ¹]
ξ	:開水路高 [L]
α	: エネルギー補正係数 [-]
eta	:運動量補正係数 [-]
D	:降雨量 [LT ⁻¹]
$r g^r$: 重力加速度 [LT ⁻²]
t	:時間 [7]
<i>x</i> , <i>y</i>	:流動方向成分の距離 [L]
である。	

上式の右辺第一項は斜面勾配による駆動力(重力項)、第二項は水深勾配による駆動力 (圧力項)、第三項は摩擦による抵抗力(摩擦項)、第四項は運動量の収支(速度項)、第 五項は降雨による運動量の損失項を示す。左辺は、これらの外力の帰結として生じる水流 の速度変化(慣性項)を示す。

開水路流れの模式図

図 4.2.18 開水路の水塊の運動

a) 連続の式

流路幅が一定でない流れに対する水塊の質量保存の関係式は、二次元平面内のそれぞれ の流動方向成分に対して次のとおり表される。

ここに、 ρ は水の密度、 A_j はj方向(j=x,y)の断面積(L^2)で、特に流路幅 W_j が一定である 場合は $A_j=W_jh$ であり、上式は次のように表される。

$$\frac{\partial(v_x h)}{\partial x} + \frac{\partial h}{\partial t} = 0$$
.....(4.2.20)
$$\frac{\partial(v_y h)}{\partial x} + \frac{\partial h}{\partial t} = 0$$

b) 平均流速公式

開水路の実験により、水塊の重さの流れ方向成分と潤辺に沿った摩擦抵抗が釣り合う等 流条件では、以下の平均流速公式(Manningの公式)が成り立つことが知られている。

ここに、R は水力学的水深を表す径深(hydraulic radius)であり、流路断面積 A および 潤辺長 S (wetted perimeter)を用いて図 4.2.17 に示す関係で定義される。 i_g は流れ方向の 流路床勾配を示す。n はマニングの粗度係数(Manning's Roughness Coefficient)であり、 河床形状・材料、地表植生(森林、草地、畑地など)、人工被覆(舗装面など)に応じて 個々の計算格子に対して与えられる。マニングの粗度係数の次元は L^{-1/3}T であり、SI 単位 系では m^{-1/3}s となる。 3) 地下水流の流体理論

一般化ダルシー則を適用した水・空気2相流れの支配方程式は、以下のように表される。

上式は多孔質媒体中の水、空気に関する質量保存則を表す。各式の左辺第1項は流動項 (移流項)、第二項は生産項、右辺は貯留項を示す。式中の記号の説明は以下のとおりで ある。

- *K* : 絶対浸透率(*m*²)
- *S_p*: 流体相 *p*(=*w*,*g*)の飽和度(-)
- ρ_p :流体相 p(=w,g)の粘性係数($Pa \cdot s$)
- μ_p : 流体相 p(=w,g)の密度(kg/m³)
- Ψ_p : 流体相 p(=w,g)のポテンシャル(Pa)
- *ϕ* :間隙率(-)
- *t* :時間(*s*)
- *q_{ps}* : 流体相 *p*(=*w*,*g*)の生産・消滅量(*m³*/*m³*/*s*)

なお、上式中の絶対浸透率と相対浸透率の積は方向性を持ち、等方性、異方性地盤の双 方が考慮される。上式中の水相、空気相のポテンシャルは、それぞれ次式で表される。

$$\Psi_{w} = P_{g} - P_{cw} + \rho_{w}gZ$$

$$\Psi_{g} = P_{g} + \rho_{g}gZ$$
(4.2.23)

ここに、 P_g は空気相圧力、 P_{cw} は毛管圧力であり、Z は標高(上方に正にとった距離) である。また、飽和率の間には次の関係がある。

$$S_w + S_g = 1$$
(4.2.24)

上式の未知変数は、空気相の圧力 Pgと水飽和率 Swであり、本モデルでは、両状態量を 同時完全陰解法により解く。

(2) 地表・地下流体の完全連成

陸面を流れる地表水と地下地層中の水、空気2相圧縮性流体の同時流れは、流体相毎に質 量収支式に、地表水、地下流体のそれぞれの運動量保存則を与えた次の支配方程式によって 一般化される。

ここに、M_p は流動による質量フラックス(kg/m²/s)、 p(=g:gas,w:water)は流体相を示す添 字である。地上、地下の流体相互作用は、左辺第1項の流動項に上述したそれぞれの運動量 保存式を適用し、それらを同時陰的に解くことで考慮される。地上流体は、上式を水相(p= w)のみに適用し、マニング型の開水路流れを記述する浅水波方程式に拡散波近似を適用した 式を用い次式で表される。

地下流体に対しては、水、空気2相2成分流体系にダルシー型の流速公式を適用した(4.2.22) 式を用い、次式により表される。

ここに、K は絶対浸透率(m²)、 $kr_p(S_p)$ は飽和度の非線形関数で表される相対浸透率(-)、 μ p は粘性係数(Pa・s)、P_p は流体圧(Pa)、g は重力加速度(m/s²)、Z は基準高さ(m)である。各相 の流体圧の間には $P_a = P_w + P_c(S_w)$ の関係が成り立つ。 $P_c(S_w)$ は水飽和度の関数となる毛管圧 (Pa)を示す。地上、地下流体が出入りする陸面境界での質量フラックスは、疑似毛管圧力、 疑似相対浸透率と呼ばれる2相流曲線を与えて評価する。

この2相流曲線は地層媒体へ与える不飽和物性(相対浸透率、毛管圧)と同等の取扱いを 地上の自由空間と地下のポテンシャル差を表現できるよう拡張したパラメータであり、湧水 や雨水浸透、それに伴う空気の地下侵入や流出といった地上-地下間の連続した流体移動を 統一的記述のもとで解析するものである。

4.3 対象領域の検討

普天間飛行場一帯の地下水の流動を想定し、検討対象とすべき領域について検討する。

4.3.1 対象領域設定の概念

水循環モデルの対象領域は、地表水の水収支が閉じた水循環系とすることが望ましく、一般的 には、河川流域全体もしくは狭窄部がある場合には狭窄部の上流域等を対象に設定される。

浅層地下水では、一般に地形分水嶺が流域界として閉じた水循環系を形成していることから、 それらを対象領域の境界と設定される。

深層地下水では、図 4.3.1 のように地形分水嶺を越えた地下水流動の考慮が必要となる場合が ある。しかし、対象領域が山地域の広い地形であって、下流の狭い平野の地下水が主たる検討対 象となる場合には、地形分水嶺を大幅に越えた地下水流動を考慮する必要性は低い。

出典:国土技術政策総合研究所資料 水循環解析に関する技術資料~地表水と地下水の一体的な解析 に向けて~

図 4.3.1 水循環モデルの対象領域設定の概念

4.3.2 対象領域の検討

対象領域設定の概念を踏まえ、対象領域を検討する。

対象地域の主な地質は、難透水性の島尻層群と高透水性の琉球石灰岩層で構成されている。東 側の普天間川には島尻層群が確認されているため、東は不透水境界とする(図 4.3.3)。北西は 海域、南西は比屋良川、北東は普天間川を境界として、解析対象領域とする(図 4.3.2)。

図 4.3.2 対象領域

図 4.3.3 地質断面図

4.4 対象期間の設定

水文等の観測資料の整備状況を踏まえ、検討対象期間について検討する。

表 4.4.1 に水循環解析の解析期間の目安を示す。水循環解析の期間は、解析に必要なデータの 存在期間に依存する他、流域特性や解析目的等に応じて設定される。渇水や洪水の影響も視野に 入れた解析目的の場合は渇水年から豊水年を含む概ね 10 年程度の期間が目安になる。

当該地域では、現況から将来(跡地利用)、さらに気候変動後の水循環の状況が重要となる。 検証データとして必要となる河川流量、地下水位等の水文観測資料については、河川流量資料は なく、現在、県実施の普天間基地周辺の有機フッ素化合物汚染源調査業務等で観測されている地 下水位や、琉球大学小野研究室で作成された重回帰式による湧水量(推定)を用いさせて頂くこ とになる。検証データが近年に限られることを踏まえ、解析目的と検討対象期間(解析期間)を 以下に示す。

①基礎的な情報の取得(現況再現):近10ヶ年程度(2004年~2025年)

②将来予測・施策評価の情報の取得(将来の土地利用変化(跡地利用)の影響評価及び施策評価):同上

③将来予測・施策評価の情報の取得(気候変動による影響評価及び施策評価):2℃上昇シナリ オ・4℃上昇シナリオ(2077年~2095年)の10ヶ年程度

解析	目的	解析内容	解析期間の目安							
甘茄	山わ桂	・現況再現	・10 年程度(渇水年・豊水年を含む)							
老姫日	りな旧	・過去の水循環の把握、水循環の	・観測データが存在する期間							
羊区ワノリン	(1寸	経年的推移の再現								
相学者	占れ桂	・地下水流動状況の把握	・1年(解析により地下水流線軌跡図や地下							
祝見「	りる旧	(地下水流線軌跡図・地下水位	水位等高線等を作成する場合には、平水							
羊肉のノ丸〉	(1守	等高線図)	年の1年を想定)							
齿笙	河街の	・雨水浸透等の効果	・1年 or10年(気象条件の影響を受けやす							
旭東市	市価の	・地下水揚水量の削減効果	い施策については、渇水年から豊水年を							
1月 年 0 0	川(行	・緑地、自然地等の保全	含む 10 年程度を想定)							
7	感度	・モデル定数の変化による現況の	・1年(水文地質構造の特性把握のための感							
ての	分析	水文地質構造の特性の把握	度分析にいては、平水年の1年を想定)							
رب لالم	将来	・気候変動による影響の把握	 ・約 20 年~30 年 (大規模渇水時や洪水時の) 							
TĽ	予測		み解析を行うことも想定)							

表 4.4.1 水循環解析の解析期間の目安

出典:国土技術政策総合研究所資料 水循環解析に関する技術資料~地表水と地下水の一体的な解析 に向けて~