Handbook for Red Soil Runoff Cntrol

Published March, 2009

For Information and inquiry, Contact to: Okinawa Prefecture, Department of Culture and Environment, Environment Conservation Section

How to utilize this handbook

This handbook was made to introduce construction methods for red soil runoff control for the residents of Okinawa Prefecture

Construction methods for control works and technology are continuously upgraded upon implementation and improvements of technology

This hand book introduces the construction methods for red soil runoff control available today.

You can refer to this hand book when you want to know about the types and functions of red soil runoff control works implemented in development projects and farm lands. When you want to check the functions of red soil runoff control works already implemented, this handbook will also be useful.

This handbook is made compact enough to be used in the field. We hope that many people will come to understand more about the red soil runoff control works

- Table of Contents -

1. Mechanism of Red Soil Runoff	1
1-1. Mechanism of Red Soil Runoff · · · · · · · · · · · · · · · · · ·	1
1-2. Impact of Red Soil Runoff · · · · · · · · · · · · · · · · · ·	6
2. Okinawa Prefecture Red Soil Runoff Control Ordinance • • • • • • • • • • • • • • • • • • •	7
2-1. Outline of Okinawa Prefecture Red Soil Runoff Control Ordinance \cdot · ·	7
2-2. Flow chart for submission ••••••••••••••••••••••••••••••••••••	7
3. Fundamentals of Red Soil Runoff Control •••••••••••••••	8
3-1. A Basic Concept of Red Soil Runoff Control Works	9
3-2. Category of Red Soil Runoff Control Works	9
3-3. Schematic Layout for Red Soil Runoff Control Works	10
3-4. Facility and Management Standard for Red Soil Runoff Control •••• 1	12
4. Planning and Maintenance for Red Soil Runoff Control ••••••• 1	13
4-1. Planning for Control Measures · · · · · · · · · · · · · · · · · 1	15
4.1. Planning for Construction / Maintenance · · · · · · · · · · · · · · · · 1	16
5. Outline of Construction method for Red ••••••••••••	L7
5-1. Outline of Red Soil Runoff Control in Development Projects · · · · · 1	L7
5-2. Outline of Red Soil Runoff Control in Farm Land ••••••• 7	71
6. For Inquiry • • • • • • • • • • • • • • • • • • •	37
Appendix 1. Measurement of Turbidity ••••••••••	39
Appendix 2. Measurement Method for Red Soil Sediment Status •••••• 8	39
Reference	99

No	-	nder Red Soil rol Ordinance Sub category	Categories of Control Measures		Construction Method	Page to Refer
1-1-1 1-1-2 1-1-3		Surface Soil Conservation Devices	Surface Conservation Works	Permanent Works	Vegetative Cover Gravel Laying Mortar Spray	21 23 25
1-2-1 1-2-2 1-2-3	Source			Temporary Works	Mulching Sheet Cover Gravel Laying	27 29 31
1-2-4	Control Devices	Temporary Surface Soil Conservation			Spray of Chemical Aggregate	33
1-2-5 1-2-6 1-2-7		Devices			Emulsion Spray Mortar Spray Roller	35 37 39
2-1-1 2-1-2 2-1-3		Runoff Control	Runoff Control Works	Surface Runoff Control	Compaction Fencing Works Gabion Baskets Small Dikes	41 43 45
2-1-4 2-2-1	Devices	Devices		Works Water Channel Control	Furrows On-site Temporary Water Way	47 49
2-2-2 2-2-3	For Controlling	Water Channel		Works	Earth Pit Leaching Pit	51 53
2-2-4	Turbid Runoff	Devices			Temporary Sand Settling Basin	55
2-2-5					Embankment	57
2-3-1		Water Diversion Devices			Diversion Channel	59

No.	Categories	under Red Soil	Category of		Construction	Page
	Runoff Cont	trol Ordinance	Control Mea	asures	Method	to
	Category	Sub category				Refer
3-1-1			Turbid	Turbid	Natural	
		Final	Water	Water	Settling	61
	Destau	Sedimentation	Treatment	Storage &	Basin	
3-1-2	Devices For Final	And	Works	Treatment	Filtering	C D
	For Final Treatment	Drainage		Facility	Settling Basin	63
3-1-3	of Turbid	Devices			Coagulation	65
	Water				Settling Basin	69
3-2-1	water	Turbid Water	Dispersion	Control	Silt Protector	67
3-2-2		Dispersion	Works		Sheet Piles	69
		Control Devices				09

 \bigcirc Table for Red Soil Runoff Control Works in Development Projects

 $\bigcirc {\rm Table}$ for Red Soil Runoff Control Works in Farm Lands

No.	Category of Control Works		Construction Method	Page to	
	Category	Sub Category		Refer	
4-1-1	Farm	Source Control	Mulching	73	
4-1-2	Management	Farm Slope	Border Strips	75	
4-1-3	Measures	Lower Border	Green Manure	77	
4-1-4		Control	Dikes	79	
4-2-1	Civil	Source Control	Reduction of Farm Slope	01	
	Engineering		Inclination	81	
4-2-2	Measures	Downstream	Sand Settling Basin	0.0	
		Control	Leaching Pit / Earth Pit	83	
4-2-3			Drainage Channel	85	

1. Mechanism of Red Soil Runoff

1-1. Mechanism

Red soil begins to run off as rainfall erodes soil. Eroded red soil, together with rain, flows into rivers. Runoff continues to travel downstream and reach the sea and disperse. Red soil runoff induces turbidity of sea water, and settles on the ocean floor with the elapse of time. Sedimentation is further disturbed by tidal movement and wave actions, inducing turbidity of sea water again.

There are several factors involved in the red soil runoff such as climate of Okinawa, topography and soil property. Furthermore, additional factors such as alteration of land by private / public development projects and human activities, cause red soil runoff.

(1) On Erosion

1) Precipitation

As intensity of rainfall in Okinawa is higher than other regions of Japan, erosive power of rain is stronger as well.

Intensity of rainfall energy is indicated by " rainfall-runoff factor ". The rainfall-runoff factor in Okinawa is 3 times higher than national average. This fact alone indicates that soil erosion in Okinawa is three times more likely to occur than national average.

Intensity of precipitation in Okinawa Nation-wide comparison

Rainfall-runoff factor is an indicator of how rain falls (volume, size of rain drops, duration of rainfall etc.) in a region. Rainfall-runoff factor is also used to calculate soil runoff.

Rain

It is defined as 1/100 of product of total kinetic energy of rainfall event (E) and 60-minute rainfall intensity (I)

Rainfall-runoff factor is calculated using the formula indicated below.

R(rainfall-runoff factor) – (E $\,\times\,$ I60 $\,$ / 100 $\,$ E – (210+89LogI) $\,\times\,$ r

I: rainfall intensity (cm/hour) of 60-minute rainfall read every hour on the hour

r: rainfall (cm) in duration of time

Rainfall event: a period of continuous rainfalls followed by zero rainfall for 6 hours or longer.

2) Topography

Steep topography easily induces surface runoff and soil erosion. The central and southern part of main land Okinawa is characterized by gentle hills and undulating topography; however, the northern part of mainland Okinawa and Yaeyama islands are characterized by steep mountains and hills .Thus red soil erosion is more likely to occur. In Okinawa, such topography susceptible for erosion occupies over 50% of the land.

3) Soil

1. Major Soils Distributed in Okinawa Prefecture

Kunigami Mahji, which shares 55% of soil distributed in Okinawa, is composed of fine particles. Due to its low viscosity and solidity, the soil is highly prone to erosion.

Other soils such as Shimajiri Mahji, Jahgaru, and Kucha, mudstone, readily crumble, and contribute as source of red soil pollution.

When placed into water, fine particles of soil dissolve into water, inducing turbidity.

2. Soil Distributions

Very erosive soil of Kunigami Mahji (indicated in red in the graph below) is distributed in the central to northern part of mainland Okinawa and the extensive area of Ishigaki and Iriomote Islands. Soil layer of Kunigami Mahji can be as thick as 20~30 m in some location. This indicates that due to the high temperature and precipitation, weathering process has reached deeper layers of soil. Not only the steep topography in the northern part of mainland Okinawa, but also the soil structure contributes to the environment that is very susceptible to red soil runoff.

3. Weakly-Developed Crum Structure

On forest soil surface, litters and corps of dead animals will accumulate. In the decomposition process of organic matters in soil, humus which is not readily decomposed by microorganism is formed in the soil. The materials excreted from humus, microorganisms and vegetation roots, act as a bonding material to bring soil particles together and form crumb structure.

In temperate regions of mainland Japan, black soil, which is rich in organic matters and humus are exposed the ground surface. on Okinawa However, in where subtropical climate induces vigorous of activities soil animals and the rate of organic microorganism, matter decomposition is much faster than that of temperate regions. Due to this fact, volume of humus is small and crumb structure of soil is not well developed. When crumb structure is not well developed, soil is easily crumbled and eroded under the rain as runoff once surface soil is exposed by development works.

4. Alteration of Topography

Under natural topography with little human impact, trees and vegetation grow well on soil, preventing red soil runoffs. Branches and leaves of vegetation prevent rainfall from directly hitting the soil surface; thus, mitigating the soil erosion.

Mechanism of Erosion in Bare Soil

The roots of vegetation also blocks runoff and control soil erosion.

Therefore, the bare soil without vegetation created by logging is left unprotected, positive effects of vegetation to control soil erosion are lost, causing red soil runoff. The major causes for the progression of bare soil are development activities and farming practices.

(1) Runoff through River to Downstream Due to rough topography of mainland north, Kumejima and Yaeyama, rivers in the regions are steep and short, creating a condition more susceptible to quick soil runoff all the way to the sea.

Red soil runoff to a river

(2) Inflow, Dispersion and Accumulation Red soil runoffs flow from the river mouth and glide over the river water surface and dispersing into the sea area. At low tide, a small amount of red soil sediments escape through the outlet of the leaf; however, most of the red soil sediments continue to accumulate within the leaf area.

Red soil runoff spread into the sea and settle. (Sediment is partially flowing out from outlet.)

(3) Turbid Sea Water induced by agitation of bottom sediments.

Red soil sediments are agitated by tidal movements and rough wave actions, inducing turbidity within the reef. As red soil runoffs from the land continue to flow into the sea, turbidity of the sea water continue to remain inside the reef.

1-2. Impact of Red Soil Runoff

(1) Pristine Condition of Coral Reefs

Okinawa prefecture consists of many island surrounded by shallow water where beautiful coral reef is well developed. Branching coral provides a good habitat for small animal such as crabs and shrimps, which in turn attract fishes, creating a rich coral reef ecosystem. Coral reefs not only serve as natural breakwater to protect the islands but also bring big blessings to the lives of people.

Sea area with a dense Acropora colony

(2) Impact to Coral Reefs

Not only the coral reefs but also tidal flats, sea grass beds extend in the area along with sandy beaches and mangrove forest. This rich natural environment provides scenic sites and recreational areas.

When red soil sediments accumulate in coral reefs, population of live coral will decrease. As small animals lose their habitats in the branching *acropora*, fishes feeding on the small animals also disappear.

Sea grass polluted by red soil

In addition, red soil runoff dispersing into the sea and beaches will cause red soil pollution. The pollution leads to deterioration of scenic landscape which has an impact to the tourism and recreational activities such diving and other marine sports.

In fisheries, turbid water cause decline of cultured mozuku sea weeds; red soil particles clog set nets. In head waters, turbidity presents possible deterioration of water quality

4. Okinawa Prefecture Red Soil Runoff Control Ordinance

2-1. Overview of Okinawa Prefecture Red Soil Runoff Control Ordinance

The purposes of this ordinance which became effective in October 1995 are the containment of red soil erosion caused by development project activities and promotion of control measures for water quality deterioration in rivers and sea by red soil runoff.

(1) Contents of Main Ordinance

1) Requirement for Red Soil Runoff Control (Article 3)

Project operators are required to take counter measures deemed necessary to prevent red soil erosion from the project site.

2) Application and Reporting of Project Operations (Article 6 and Article 9)

Project operators (private/public) who plan to develop an area of 1,000 m² or more, must report the details of project and red soil runoff control countermeasures to the Governor for reviewing.

3) Consultation and Orders to Change Plans (Article 9 Item 3, Article 10)

When necessary, the Governor is authorized to issue an order to change project plan after reviewing the contents of project plan based on the Standard for Okinawa Prefecture Red Soil Runoff Control Facility.

(4) Designation of Chief Officer Responsible for Red Soil Runoff Control (Article 12)

The specified project operators should appoint a person responsible for implementation of red soil runoff control measures.

(5) Orders for Improvements (Article 14)

When project operators do not comply with Governor's order to change the plan, the Governor may issue an order for necessary improvement, or temporary suspension.

Discontinuance of Development Acts (Article 15)

When project development work is terminated /suspended, the project operator must notify the Governor. The Governor can issue an order for the project operator to implement necessary measures when he/she finds that the red soil runoff control measures taken are not sufficient.

(6) Suspension Order for Unlicensed Development Works (Article 16)

The Governor can issue an order to terminate/suspend the project operation when such operation was implemented without proper notification to the Governor.

(7) Management of Farmland and others (Article 17~19)

Manager of farmland and vacant lot, must make efforts to implement red soil runoff control measures. When red soil runoff form such areas is found, the Governor can give directions the land/farm manager to control such runoff.

9) On-Site Inspection (Article 20)

The Governor shall have the authority to direct on-site inspection by official staff.

10) Penalties (Article 25, Article 26)

When a person/staff violates the government order, the employer (sub-contractor) of the staff as well as the contractor of the project shall be subject to penalty of fine.

2-2. Flow of Repot/Notification Procedures

Notice of Unnecessity of Plan Modification/Notice of Plan Confirmation is sent to a project operator.

- · When starting construction, a project operator fills out the form of On Starting of Construction Activities,
- and fax it to screening section in charge (health center or department of environment conservation).

Fig. 2-2-1 Flow of Report/Notice Procedure for Okinawa Prefecture Red Soil Runoff Control Ordinance

3 The Basic of Red Soil Runoff Control

3-1. The basic concept of Red Soil Runoff Control Measures

Turbid water is generated by a series of actions such as infiltration of rain water to soil, destruction of soil structure by rain drops, and dispersion of soil particles into water, followed by erosion/transportation by surface runoff.

Red soil runoff control requires measures specific to a series of runoff process from generation of turbid water to drainage to outside of construction area as indicated in fig.3-1-1. The basic concept of control measures includes 4 basic methods indicated below.

Fig. 3-1-1 Basic Concept of Red Soil Runoff Control Measures

(1) Surface Conservation: Control of Turbid Water Generation

Surface is conserved by reduction of bare soil, which is the source of turbid water, minimization of bare soil exposure duration, and conservation of bare soil at early stage.

(2) Runoff Control: Control of Surface Runoff

Measures are implemented to reduce surface runoff speed, to promote infiltration for reduction of surface runoff energy and to reduce the volume of turbid water by diverting surface runoff from in/out of construction plot.

(3) Turbid Water Treatment:

Turbid water is stored temporarily for settling and filtering of soil particles and discharged at a below the required standard level.

(4) Dispersion Control: Dispersion of Red Soil to Sea

When implementing works near rivers, seashores and ports, contractors are required to provide measures to control dispersion of turbid water from work area .

The figure below is a summary of red soil control system and classification.

Fig. 3-1-2 Classification of Red Soil Runoff Control Measures

3-2. Classification of Red Soil Runoff Control Methods

Red soil runoff control methods are indicated in fig.3-2-1.

Under the 4 basic concept of red soil runoff control methods, 4 major works are identified such as surface conservation works, runoff control works, and turbid runoff treatment works, and dispersion control works. The basic principle is that these 4 control methods are systematically implemented in each construction area.

注2.

4 basic concept to control red soil runoff

3-3. Layout of Red Soil Control Works

Fig. 3-3-1 Layout Plan for Red Soil Runoff Control Works

		Category		Facility Standard
		Surface	Vegetative Cover,	*Bare soil exposed by
		Conservation	Sawing, Soil	construction work should
		Devices	Aggregating	be quickly covered.
Correct	Surface		Chemical, Spray of	*Unfinished surface is
Source	Conservation		seed, mortar, concrete	covered immediately by
Control Devices	Works	Temporary	Sheet Cover,	temporary devices.
Devices	WORKS	Surface	Mulching,	*For farmland with
			Asphalt Emulsion,	enclosing dike, use of
			Aggregating	mulching is sufficient.
		Conservation	Chemical, Seed Spray	
		Runoff control	Small Dike,	*A combination of these
		And Water	Water Channel,	devices is used according
		Channel	Fence,	to the progress of civil
		Devices	Gabion Basket	engineering works.
				*Small dike is made
				every 40m when slope
				inclination is less the 2
				degree, every 30me when
				inclination is 2~3 degree,
Turbid	Runoff			and add more when the
Runoff	Control			inclination is over 3 .
Control	Works			*Small dikes are made
Devices	WOINS			on the shoulder and
				bottom of the slope.
				*Slopes are made of bare
				soil surface to direct
				runoff to diversion
				channel
		Devices to	Diversion	* Diversion channels
		control inflow	Channel	should be constructed
		of water to the		prior to civil engineering
		plot		works.

3-4.1 Facility Standards on Red Soil Runoff Control Ordinance (1)

	Categor		Facility Standard	
Turbid runoff	Runoff	Enclosing	Enclosing	This is used in farmland where
Control	Control	Dike	Dikes	storage and underground
Devices	Works	Devices		infiltration are relatively easy, in
				lime stone area, or in temporary
				work site for small-scale
				development.
	Turbid Water	Final Settling and		Turbid water storage capacity
	Treatment	Draining Devices		should be $150~{ m m}^{ m s}$ or more per
Turbid water	Works			1,000 m^2 . This capacity can be
Final				reduced when discharge standard
Treatment				is cleared by additional use of
Devices				filtering devices.
Devices	Turbid Water	Dispersion	Sheet Pile	These devices are used when
	Dispersion	Control	Silt	civil engineering work is done
	Control Works	Devices	Protector	underwater or near water.

 Table 3-4-2
 Facility Standard on Red Soil Runoff Control Ordinance (1)

4 basic control works identified under the red soil runoff control measures.

Category	Management Standard
Effluent Standard	Turbid water is promptly discharged when SS reaches 200mg/L
For Turbid water	or below and reading value should be recorded.
Maintenance of Facilities	Visual patrols of facilities are implemented and results are
	recorded. When alert is found in the facilities, immediate
	measures should be taken to improve the situation.
Removal and Disposal of	Red soil sedimentation in the facilities should be removed and
Red Soil Sediment	adequately disposed.

Table 3-4-3 Management Standard on Red Soil Runoff Control Ordinance

4. Planning and Maintenance of Red Soil Runoff Control Measures

4-1. Planning of Control Measures

In planning of red soil control measures, information gathering and on-site survey to assess the conditions of location and surrounding environment become crucial so that appropriate measures to the site condition can be implemented. Table 4-1-1 can serve as a check sheet to assess the conditions of location and surrounding environment.

- (1) Conditions of Location: Downstream monitoring points such as topography (runoff routes and end), drainage routes, spring water, soil, rainfall.
- (2) Conditions of Surrounding Environment: Use of catchment area (intake stations, fishing grounds, resorts and so on), land use of surrounding area, rare fauna and flora.
- (3) Others: Activities of catchment area coordination council, information on other red soil runoff control facilities in surrounding areas.

Category	Sub Category
Construction Title	
Location	
Soil & Geology	
Rivers within work site	Upstream Catchment area
(When bypass channel is	Flood discharge (recurrence interval)
required)	
Status of	Utilization for leisure activities (camping sites and the like)
downstream	Water intake (types/management)
	Existing red soil control facilities
	Red soil monitoring facilities in the vicinity
Red Soil	Status of upstream land use
Runoff Status	Status of rivers for discharge (photos(distant/near view)
	Status of red soil sedimentation (photos, water quality(SS))
Status of	Runoff routes and sea area.
Downstream	Fishing rights and fishing ports concerned
Sea Area	Status of sea farming
	Utilization for fishing and swimming
	Resort Facilities
Remarks	Distribution status of rare fauna & flora on site and its vicinity

 Table 4-1-1
 Check Parameters for Survey

4-2. Construction Planning / Maintenance

In creating a construction plan, one needs to assess key points of required measures according to the stages of construction and its progress. Key points for making a construction plan is indicated below.

(1) Segmented Construction within Work Area

In order to minimize bare soil area on site, construction is implemented in segments according to the construction plan. After surface conservation works are completed in a segment, construction work in other segment should begin as a basic principle.

(2) Preparation of Quarterly Red Soil Control Plan

Based on construction progress plan every quarter, forecast is made for generation of turbid water and runoff routes in every stage of construction. According to the forecast made, construction time table is made for planning layout of runoff control facilities and drainage channels. Key points for maintenance are described below.

(3) Clarification of Roles and Assignment of Chief Officer

As indicated in fig.4-2-1, A chief officer for red soil runoff control management (on-site agent) is assigned and persons in charge are designated for each task.

(4) Preparation of Suspended Solids Measurement Log and others

As stipulated in Red Soil Runoff Control Ordinance, the forms for 1) suspended solids measurement log, 2) a check sheet for site patrol in rainy weather, and 3) emergency report should be prepared for management of the site, and submitted according to the regulation.

Fig. 4-2-1 Management System for Red Soil Runoff Control

5. Outline of Red Soil Runoff Control Methods

5-1. Outline of red soil runoff Control in Development Works

(1) Overview

1) Measures Against the Sources of Runoff

Turbid red soil runoff is caused by erosion when rainfall hits bare soil surface (source of runoff) exposed by landslides and developments. This runoff can be controlled by covering the bare soil surface so that rain fall will not hit the soil surface directly. Thus surface conservation works are identified as a countermeasure against the source of runoff by covering the soil surface.

Various types of surface conservation works are available such as artificial cover works with various cover materials such as earth work sheets, and vegetative cover works with seed spraying and turf. Controlling the sources of runoff is the primary measure and applicable to all scale of development works regardless of the scale requirement of Okinawa Prefecture Red Soil Runoff Control Ordinance (development area of 1,000 or more).

2) Measures Against Turbid Runoff

In order to control turbid runoff to the outside of construction area (or inflow to the work area), diverting channels, small banks and soil runoff control embankments are constructed around the work area when needed. These measures basically control the movement of turbid water of red soil, and direct to final treatment devices. As for the soil runoff control fences and weirs, filtering function is added to the structure by using materials such as sand, tree branches and grass, chemical non-woven fibers, and coconut fibers, in order to reduce the flow volume of turbid water.

3) Measures for Final Turbid Water Treatment

Okinawa Prefecture Red Soil Runoff Control Ordinance basically requires construction of sand settling basin for a development area of 1,000 m² or more. This basin with capacity to store a continuous rainfall of 150 mm will allow turbid matter to settle after the rainfall and then to discharge a clear surface water (natural settling basin).

When enough basin capacity cannot be secured, filtering settling basin or coagulating settling basin is constructed.

(2) Details

Outline of engineering works to Control red soil runoff is indicated in table 5-1-1~12.

No.	Category	Sub Category	Construction Method	Outline of Method
1-1-1			Vegetative cover	Control runoff by covering bare
		Surface soil		soil surface with vegetation
1-1-2		Conservation	Gravel laying	Control runoff by laying relatively
		Devices		larger size of gravels
1-1-3		Devices	Mortar spray	Control runoff by spraying mortar
				to bare soil surface
1-2-1			Mulching	Control runoff by covering bare
				soil surface with dry grass such as
				silver grass
1-2-2	Source		Sheet cover	Control runoff by covering bare
	Control			soil surface with sheets
1-2-3	Devices		Gravel laying	Control runoff by laying
	Devices	Temporary		relatively large gravels
1-2-4		Surface Soil	Spray of Chemical	Surface red soil particles are
		Conservation	Aggregates	aggregated to prevent erosion
1-2-5		Devices	Spray of emulsion	Control runoff by spraying
				emulsion to cover bare surface
1-2-6			Mortar Spray	Control runoff by spraying mortar
				to cover bare surface.
1-2-7			Roller Compaction	Control unfinished bare
				construction surface by
				compaction with roller.

Table 5-1-1 Construction Method for Red Soil Runoff Control (1)

			Construction	
No.	Category	Sub Category	Method	Outline of Method
2-1-1			Fencing Works	Control erosion by reducing
			0	runoff speed by fences made of
				bamboo, net and brushwood
2-1-2			Gabion Basket	Control slope collapse and erosion
		Runoff	Works	by reducing runoff speed with
		Controlling		wire basket filled with stones
2-1-3		Devices	Small Dikes	Control runoff by spraying mortar
				to bare soil.
2-1-4			Furrows	Furrows are set at an angle to the
				slope to slow down runoff and
				direct it to a temporary drainage
2-2-1	р ·		On-site	This will direct turbid runoff to
	Devices		Temporary	final water treatment devices, or
	For		Water Channel	discharge clear runoff to outside
	Controlling Turbid			of work area.
2-2-2	Runoff		Earth Pit	This will slow down runoff speed,
	NUIIOII	Water		facilitate leaching in to the earth,
		Channel		and settle a coarse sediment
2-2-3		Devices	Leaching Pit	To control surface runoff, this pit
		Devices		will reduce total volume of runoff
				in a catchment area
2-2-4			Temporary Sand	Reduce the total volume of runoff
			Settling Basin	in the work area
2-2-5			Embankment	This will contain surface runoff
				inside the construction site
2-3-1		Water	Diversion	This diverts surface water to
		Diverting	Channel	outside the work area to prevent
		Devices		inflow to the work area

Table 5-1-2 Construction Method for Red Soil Runoff Control (2)

Table 5-1-3 Construction Method for Red Soil Runoff Control (3)

No.	Category	Sub Category	Construction Method	Outline of Method
3-1-1			Natural Settling	Remove red soil particles by
			Basin	letting the turbid water to flow
		Final Settling		in for natural settling.
3-1-2		and	Filtering Settling	Remove red soil particles by
	Devices	Draining	Basin	letting the turbid water to flow
	For Final	Devices		in for filtering & settling.
3-1-3	Treatment		Coagulation	Remove red soil particles by
	of Turbid		Settling	adding coagulant to turbid
	Water		Basin	water to settle
3-2-1			Silt Protector	Control diffusion of turbid
		Turbid Water		water by setting silt protector
3-2-2		Control Devices	Sheet Pile	Control diffusion of turbid
				water by setting sheet piles

In the following pages, key points for various countermeasures on site are discussed.

5-2. Outline of Red Soil Runoff Control in Farm Lands

(1) Overview

1) Countermeasures in farm land

Consistent implementation of countermeasures in farm lands is difficult in some cases due to an additional cost for farmers, shortage of labors, and occasional drop in crop quality. However, since surface runoff from the farm lands leads to decline in farm productivity, implementing measures against runoff is not always a negative factor to farmers.

For farmlands, seasons for postharvest, regeneration, and seeding present problems when farmlands are in bare condition. Therefore, consideration of relatively easy measure becomes necessary. It is desirable to implement measures that will not only control soil runoffs but also promote growth of crops. (Fig.5-2-1)

2) Major methods of red soil run-off control in farm land

From the viewpoint mentioned above, methods such as intercropping (cultivation other crop between ridges thus leaves no bare land), reduced tillage farming (tillage is done for planting section only) to control emergence of bare land, and use of mulching, green manure, and green belt are being studied and implemented.

Fig. 5-2-1 Concept of Red Soil Runoff Control in Farm Lands

Additionally, in land improvement projects, reduction of farm slope inclination is implemented. (Tale 5-2-1)

(2) Details

As implementing a single method is not enough to control turbid runoff of red soil, a combination of method that is suitable for the site becomes necessary. In table 5-2-1, outline of measures to control red soil runoff in farm lands is indicated.

			Construction	
No.	Category	Sub Category	Method	Outline of Method
4-1-1		Source Control	Mulching	Control red soil runoff by
				covering bare soil with some some leaves such as cropped cane leaves.
4-1-2	Farm	Farm Slope Lower Border	Border Strips	Control red soil runoff by planting vegetation such as
	Management	Control		ginger around farm boarder.
4-1-3	Measures		Green Manure	Minimize a bare soil during
				furrow period by plating cover
				vegetation.
4-1-4	•		Dikes	Control soil runoff by placing
				bundles of cane leaves on dikes
4-2-1		Source Control	Reduction of Farm	By reducing slope inclination,
			Slope Inclination	speed of runoff is reduced.
4-2-2	•	Downstream	Sand Settling Basin	Turbid runoff from farm is
		Control	Earth Pit	directed to a pit or basin. After
	Civil			settling of red soils, clear
	Engineering			surface water is discharged.
4-2-3	Measures		Drainage Channel	Diverting channel is created to
				divert runoff from outside of
				farm; drainage is constructed
				to drain turbid runoff from
				farmland.

In the following pages, key points for various measures on site and guidelines are illustrated.