2018年のヒメジャコの種苗生産 (栽培漁業センター生産事業)

岩井憲司*

県内事業者の要望種苗を配付するためシヒメジャコ種苗 を生産する.

材料及び方法

親貝は、地先海域から採集し陸上水槽で飼育した個体群と、2008~2009年(平成20~21年)に種苗生産した稚貝を親貝に養成した個体群を用いた. 採卵は、自然放卵による採卵2回、従来通りの足糸剥離、殻洗浄、干出、止水昇温、生殖巣部懸濁及び換水刺激を用いた岩井(2008)による採卵誘発1回、そしてセロトニン打注による採卵1回、合計4回行った. セロトニンを用いた方法は、2.25mMの濃度に調整したセロトニン塩酸塩(50mLの海水に20mgのセロトニン塩酸塩を希釈)を、各親貝に対し0.1 mL 程度、蝶番の隙間から生殖巣へ直接打注して採卵を誘発した.

卵は円形 200L 水槽(ポリカーボネイト製)に収容して楳精を行った. 採卵の翌日ふ化幼生を計数して, FRP 製 20kL 水槽 (2m×10m×1m) に収容した. その密度は 0.3 個体/mL以下とした. 飼育水は砂ろ過海水を用いた.

幼生の飼育中に共生藻を2回投与した. 投与量の基準は、飼育水槽内の共生藻密度を5~10cells/mL になる量とした. 共生藻の1回目の投与日は日齢2~3、2回目は日齢5~7に行った. 共生藻は投与日に、殻長50mm程度のヒメジャコの外套膜を摘出して用いた. 卵収容後30日間は止水飼育とし、日齢30頃から1日1回転程度の微注水飼育とした. 日齢60~90頃になると飼育水槽に藻が繁茂するようになる

ので、稚貝を回収して遮光幕を施した屋外の FRP 製 4kL 水槽 $(1.2m \times 4.9m \times 0.7m)$ へ移槽した.

その後は、水槽に繁茂する藻の駆除のためシラヒゲウニの 種苗を水槽に投入して飼育を継続した. 殻長 8mm 以上の配 付サイズに成長した稚貝を県内の漁業関係機関に順次配付 した.

結果と考察

種苗生産の結果を表1に示す.

今年度、ヒメジャコの採卵で初めてセロトニンの打注による採卵を試みた. 貝類の採卵にセロトニンを使用した報告は、二枚貝 6 種に対して濃度 2mM を 0.4mL 注入で 15 分以内に放卵を確認 (M.C. Gibbons・M.Castagna, 1984), イタヤガイに対し、濃度 0.25mM を 0.5mL 注入で 9 割が放精 (田中・村越, 1985) 等がある. シャコガイでは、シャコガイ7 種類に対し、濃度 2mM を 0.5~7mL 注入で 2~3 分後に放精、シャゴウは放卵 (R.D.Braley, 1985), シャコガイ 6 種類に対し、濃度 4.5mM を 1~2mL 注入で 5~10 分以内に放精 (Simon Ellis)、ヒレジャコに対し、4.5mM を 0.3 mL 注入で 5 分以内に放精、60 分以内に放卵(南, 2018)の報告がある. このようにセロトニンの有効事例が報告されていることから、今回ヒメジャコでセロトニンの有効性を検証した.

ヒメジャコの採卵でのセロトニンの使用は、上記ヒレジャ

表 1 2018年のヒメジャコ種苗生産状況

回	卵 月	卵						
	月	Len				成立後		備考
_次		親	採卵数	収容卵数	生残数	からの	到達	
	日	数	(万粒)	(万粒)	(万粒)	生残率	日令	
1 5	/1	9	4, 420	4, 150	4.0	0.1	57	生殖線懸濁刺激
2 5/	/10	6	4,630	3,750	9.5	0.3	74, 82	飼育水槽にて放卵 生産貝
3 5/	/15	5	1,600	1,600	15.0	0.9	86, 101	セロトニン打注
4 6/	/26	6	290	270	3. 5	1.3	107	飼育水槽にて放卵 生産貝
計			10,940	9,770	32.0	0.3	-	

^{*}E-mail: iwaikenj@pref.okinawa.lg.jp

表2 平成30年度におけるヒメジャコの種苗配付状況

配付年月日	配付先	数 量	平均殻長 (mm)	用途
2018/5/18	読谷漁協	1,000	17	養殖
2018/5/18	民間企業	50,000	16	養殖
2018/6/11	民間企業	30,000	15	養殖
2018/6/12	八重山漁協	2,000	15	養殖
2013/6/14	糸満漁協	5,000	18	養殖
2018/6/29	民間企業	1,000	20	養殖
2018/7/31	糸満漁協	5,000	19	養殖
2018/8/16	座間味村漁協	2,000	21	養殖
2018/9/21	糸満漁協	2,000	15	養殖
2018/10/16	八重山漁協	2,000	27	養殖
2018/10/16	八重山漁協	2,000	19	養殖
2018/10/19	糸満・西崎・喜屋武集落協定	3,600	16	放流
2018/10/19	糸満漁協	8,000	16	放流
2018/10/23	八重山漁協	3,000	12	養殖
2018/10/31	民間企業	30,000	24	養殖
2018/11/26	座間味村漁協	5,000	16	養殖
2018/11/26	座間味村漁協	1,000	23	養殖
2018/11/26	糸満漁協	1,000	23	養殖
2018/11/27	沖縄市漁協	1,000	16	放流
2018/12/25	民間企業	25,000	21	養殖
2019/1/22	伊是名漁協	10,000	10	放流
2019/2/20	民間企業	7,500	16	放流
2019/2/28	八重山漁協	1,000	15	養殖
2019/3/4	糸満漁協	2,000	15	養殖
2019/3/18	民間企業	23,000	14	養殖
2019/3/18	港川漁協	3,000	12	養殖
		226,100		

コに用いた濃度の 1/3 の 2.25mM とし、量を 1/2 の 0.1 mL とした。セロトニン注入 1~2 分後には放精が始まり、注入後 20 分には放卵を始める個体が確認された。セロトニンを注射した親貝は、その後も継続して養成できているので、今回使用した注入量は親貝の生死に影響を及ぼす量では無く、採卵方法としての有効性が実証されたものと考える。

今年度の種苗生産では、最初の移槽を行った日齢を1回目では日齢57,2回目では日齢74及び86,3回目では日齢86及び101,4回目では日齢107とした。これまでの種苗生産では、最初の移槽を日齢30~60頃に行っているので、今年度の飼育方法は、例年と比べて、ふ化幼生を収容してから最初に取り上げる迄の期間が長い。最初の取り上げの時点で稚貝は設長1mmサイズに達しており、その生残率は平均0.3%で、比較的低い値であったが、生産が不調であった1回目の

成績を除くと0.8%となり、例年と同様の値である.

セロトニンを使用した3回目では、取り上げ時の生残数は15万個体で、今年度4回行った種苗生産の中で最も多く、その後も順調に飼育している。セロトニンを用いた産卵誘発による卵であっても、従来方法の採卵による種苗生産と同様の成績であったことから、セロトニンを用いても種苗生産に影響はないと考える。

2018 年度(平成 30 年度)における栽培漁業センターのヒメジャコ種苗の配付状況を表 2 に示す.配付数は 226,100 個体(養殖用 126,500 個体,放流用 96,100 個体)であった.

文 献

岩井憲司, 2008: ヒメジャコの種苗生産. 平成 20 年度沖縄県 栽培漁業センター事業報告書 19, 45-47.

R.D.Braley, 1985: Serotonin-induced spawning in giant clams (Bivalvia; Tridacnidae). Aquaculture ,47,4, 321—325.

M.C. Gibbons, M.Castagna, 1984: Serotonin as an inducer of spawning in six bivalve species. Aquaculture ,40,2, 181—191.

田中彌太郎, 村越正慶, 1985: : セロトニン注射によるイタヤガイの放精・放卵誘起. 養殖研究所事業報告書 7, 9-12.

Simon Ellis: Spawning and Early Larval Rearing of Giant Clams (Bivalvia: Tridacnidae). Center for Tropical and Subtropical Aquaculture Publication Number No. 130, 29–30.

南 洋一,2018:水産海洋研究,県単独事業(セロトニン塩 酸塩を使ったヒレジャコ産卵誘発技術開発).平成27年度 沖縄県水産海洋技術センター事業報告書78,12.