資 料 編

＜資料編 目次＞

1 海岸漂着物及び有害物質の影響と対策方針の検討資－1

1．2【東京農工大学•高田秀重教授 提供】有機汚染物質の分析結果等…．．．．．．．．．．．．．．．．．．資－17
1．3【東京農工大学•高田秀重教授 提供】有機汚染物質の分析結果等 第 2 報……．．．．．資－31
1．4【東京農工大学•渡邊泉教授提供】重金属元素の分析結果等…．．．．．．．．．．．．．．．．．．．．．資－55
1．5【東京農工大学•渡邊泉教授 提供】重金属元素の分析結果等 第二報……．．．．．．．．．．資－71
1．6【防衛大学校•山口晴幸名誉教授提供】海岸漂着ゴミから溶出する有害化学物質の潜在的ポテンシャルの評価～定量的広域評価モデルの適用方針～…．．．．．．．．．．．．．．．．．．．資－91
1．7【防衛大学校•山口晴幸名誉教授提供】海岸漂着物から溶出する有害化学物質の潜在的ポテンシャルの評価～西表島（ 2 海岸）•座間味島（ 2 海岸）

資－109
1.8 【防衛大学校•山口晴幸名誉教授 提供】マイクロプラスチックの甚大な供給源である海洋発泡スチロールの規制強化～沖縄島嶼での調査を踏まえて～…．．．．．．．．．．．．．．．．．．資－187
1．9【沖縄県立芸術大学•藤田喜久准教授 提供】サンゴ礁砂浜海岸に生息するイソハマグ リにおけるマイクロプラスチックの取り込み状況．．．資－201
1．10【参考資料】令和元年度沖縄県海岸漂着物モニタリング調査業務報告書（抜粋版）－資－211

1 海岸漂着物及び有害物質の影響と対策方針の検討

1．1．海岸漂着物に含まれる有害物質に関する情報収集整理

海岸漂着物に含まれる有害物質に関する情報収集整理の条件と収集件数は以下のと おりである。表 1．1－1～表 1．1－3 にその一覧を示す。

条件 B－1	生物がゴミを介して有害物質に曝露されている文献（2件）	表 1．1－1
条件 B－2	ゴミに含まれる又は吸着した有害物質が生物に及ぼす影響 に関する文献（5件）	表 1．1－2
条件 C－2	ゴミの取り込み又は暴露による生物影響に関する文献（8件）	表 1．1－3

表 1．1－1 B－1：生物がゴミを介して有害物質に曝露されているかを調査した文献一覧

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
B1-	Gassel，M．and Rochman，C．M． （2019）．＂The complex issue of chemicals and microplastic pollution： A case study in North Pacific lanternfish．＂ Environmental pollution（Barking， Essex ：1987）248： 1000－1009．	化学物質の複雑な問題とマイクロプ ラスチック汚染：北太平洋のハダカ イワシにおけるケ ーススタディ	$\begin{array}{\|l\|} \hline \text { 鰂 (ハ } \\ \text { ダカ } \\ \text { ワシ) } \end{array}$	環境試料		プラスチックが蓄積していることで知られる北太平洋亜熱帯循環（North Pacific Subtropical Gyre，以下「Gyre」という。）の内外で採取したハダカイワシ中の ビスフェノール $\mathrm{A}(\mathrm{BPA})$ ，ノニルフェノール $(4-\mathrm{NP})$ ， オクチルフェノール（ $4 \mathrm{n} \cdot \mathrm{OP}$ ），アルキルフェノールエ トキシレート（APEs），殺虫剤（DDTs），ポリ塩化ビ フェニル（PCBs），ポリ臭素化ジフェニルエーテル （PBDEs）を測定し，化学物質濃度と試料採取地点の プラスチック密度の相関を調査した。 Gyre の内外で，ハダカイワシ中のプラスチック関連物質（BPA，4－NP，4n－OP，APE，PBDEs）の平均濃度は同程度だった。殺虫剤はGyre 外の方が Gyre 内の個体よりも高濃度で，プラスチック濃度と負の相関が あった。全 PCBs 合計濃度も Gyre 外の方が Gyre 内 よりも高濃度だったが，低塩素 PCBs は Gyre 内の方 が高く，プラスチック密度と正の相関があった。この結果は生物中の低塩素 PCBs とプラスチックの関係を調查した他の研究例の結果とも一致しており，マイク ロプラスチックから生物への化学物質の輸送の可能性 を示唆した。

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
$\begin{gathered} \hline \text { B1- } \\ 02 \end{gathered}$	Rivera－Hernandez，J． R．，Fernandez，B．， Santos－Echeandia，J．， Garrido，S．，Morante， M．，Santos，P．and Albentosa，M．（2019）． ＂Biodynamics of mercury in mussel tissues as a function of exposure pathway： natural vs microplastic routes．＂ The Science of the total environment 674：412－423．	$\begin{aligned} & \hline \text { 自然の経路・マイ } \\ & \text { クロプラスチック } \\ & \text { を介した経路で曝 } \\ & \text { 露した場合の, } \\ & \text { ガイ中水銀のバイ } \\ & \text { オダイナミックス } \end{aligned}$	$\begin{aligned} & \text { 二枚貝 } \\ & \text { (ムラ } \\ & \text { サキイ } \\ & \text { ガイ) } \end{aligned}$	実内曝露実験	水銀	ムラサキイガイに，MP に吸着させた状態，微細藻類に吸着させた状態，溶存態で，水銀を曝露し，パル スチェイス実験（瞬間標識追跡実験）を実施した。 粒子の種類に関係なく，ムラサキイガイは同程度の水銀を蓄積した。これは，両方の粒子に水銀が含まれ， その利用可能性が類似していたためである。 水経由で水銀に曝露した場合は鰓で，水銀を吸着し た粒子経由で水銀に曝露した場合は消化管で，水銀の濃度が最も高かった。 1）MPの一部は摂食されず体表面に付着した可能性 があること，2）MPは栄養がないため胃で拒絶され，消化管に入らずに糞便として排泄されること，3）MP と水銀の高い親和性により多くの水銀はMPと一緒に排泄されたことから，MP による水銀の摂取量のうち 70% 以上が迅速に除去された。 微細藻類は消化され，その表面についていた水銀を放出することで，水銀の消化管への侵入を促進する。 この場合，消化管から吸収された水銀は足系まで運ば れ，より深いレベルまで行き届く。 溶存態から曝露した場合は組織内部に浸透し，鰓か ら消化管に運ばれる。 水銀を吸着させた MP を曝露した場合の水銀の除去率は，他の経路で曝露した場合より高かったが，浄化期間でも水銀がムラサキイガイ内に保持されたため， MP 水銀のベクター効果を無視するべきではない。

表 1．1－2 B－2：ゴミに含まれる／吸着した有害物質が生物に及ぼす影響を調査した文献一覧

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
$\begin{gathered} \mathrm{B} 2 \\ 01 \end{gathered}$	Gao，M．，Liu，Y．and Song，Z．（2019）． ＂Effects of polyethylene microplastic on the phytotoxicity of di－n－ butyl phthalate in lettuce（Lactuca sativa L．var．ramosa Hort）．＂Chemosphere 237： 124482.	$\begin{aligned} & \text { レタスへのフタル } \\ & \text { 酸ジ・n・ブチル } \\ & \text { 植物毒性に対する } \\ & \text { ポリエチレン製マ } \\ & \text { イクロプラスチッ } \\ & \text { クの影響 } \end{aligned}$	$\begin{aligned} & \text { 植物 (レ } \\ & \text { タス) } \end{aligned}$	室内曝露実験	DBP	フタル酸ジ・n・ブチル（DBP）及び様々な濃度でのマ イクロプラスチックの曝露（14日間，28日間）に対す る，レタスの光合成パラメータ及び抗酸化システムの反応を調査した。 MP 単独•DBP 単独•MPと DBP の両方に曝露し た後，レタスの成長•光合成パラメータ・クロロフィ ル含有量が対照区と比べて有意に減少した（ $\mathrm{p}<0.05$ ）。 この結果から，マイクロプラスチックの曝露は，レタ スの成長，光合成，抗酸化防御システムを阻害しうる ことが示された。 すべての MP＋DBP 処理群では，DBP 単独瀑露群に比べ，成長パラメータ（葉及び根の乾重量と湿重量，葉の数）が有意に減少した（ $\mathrm{p}<0.05$ ）。さらに，光合成速度，気孔コンダクタンス，蒸散速度，蛍光パラメー夕，葉のクロロフィル含有量，ルビスコ活性が減少し，細胞間二酸化炭素濃度は増加した。この結果から，MP は DBP の光合成への影響を悪化させたことが示唆さ れた。また，すべての MP＋DBP 処理群では DBP 単独曝露群に比ベ，レタスの葉と根のスーパーオキシドラ ジカルと過酸化水素の含有量が増加した。MP 濃度の増加により抗酸化レベルは上昇した $(1.0 \mathrm{mg} / \mathrm{mL}, ~ 14$日間の曝露群を除く）。なお， $1.0 \mathrm{mg} / \mathrm{mL}$ ， 14 日間の曝露群では細胞膜が損傷していた。細胞の損傷の程度は レタスの成長に従って軽減し，常に根は葉よりも損傷 が大きかった。 結論として，MPの曝露により DBPの影響が悪化し た。

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
$\begin{array}{r} \mathrm{B} 2 \\ 02 \end{array}$	Gonzalez－Soto，N．， Hatfield，J．， Katsumiti，A．， Duroudier，N．，Lacave， J．M．，Bilbao，E．， Orbea，A．，Navarro，E． and Cajaraville，M．P． （2019）．＂Impacts of dietary exposure to different sized polystyrene microplastics alone and with sorbed benzo［a］pyrene on biomarkers and whole organism responses in mussels Mytilus galloprovincialis．＂The Science of the total environment 684：548－ 566.	ムラサキイガイに異なるサイズのマ イクロプラスチッ ク及びベンゾ［a］ピ レンを吸着したマ イクロプラスチッ クを摂食曝露する ことによるバイオ マーカー及び組織全体の反応への影響	$\begin{aligned} & \text { 二枚貝 } \\ & \text { (ム ラ } \\ & \text { サ キ イ } \\ & \text { ガイ) } \end{aligned}$	室内曝露実験	BaP	MP の大きさと吸着したベンゾ［a］ピレン（BaP） の生物への影響を明らかにするため，ムラサキイガイ にポリエチレン製 MP（ $0.5 \mu \mathrm{~m}, ~ 4.5 \mu \mathrm{~m}$ ）単独， BaP を吸着させたMPを曝露し，影響を調査した。 ムラサキイガイに 26 日間毎日， $0.058 \mathrm{mg} / \mathrm{L}$ の濃度で MP（バージン MPと BaP を吸着させた MP）を曝露 した（ $4.5 \mu \mathrm{~m}$ の MP の場合 1000 個 $/ \mathrm{mL}, ~ 0.5 \mu \mathrm{~m}$ の MP の場合 7.44×10^{5} 個 $/ \mathrm{mL}$ に相当）。 イガイ中 BaP 濃度は時間経過とともに増加し，特に より小さいサイズのMPで顕著だった。大きいサイズ のMP は胃内腔と消化管に多く存在し，上皮細胞内に もまれに存在した。すべての影響は曝露時間の経過と ともに大きくなった。血球の生存率，カタラーゼ活性，消化管上皮の構造に着目すると，MP 単独よりも BaP を吸着した MPの方が毒性が高かった。また，消化管 の DNA 損傷と細胞組成に着目すると， $4.5 \mu \mathrm{~m}$ よりも も $0.5 \mu \mathrm{~m}$ の MP のほうが毒性が高かった。組織レべ ルではすべての曝露区で炎症反応がわずかに増加し た。 ただし，全体でみると 26 日目に MP の影響を補ら効果（吸収効率の上昇）が観察され，その結果 BaP を吸着させた小さいサイズの MP の曝露群では成長量が増加した。これはストレスに対処するためにエネルギー需要が増加したことに関係している可能性がある。

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
$\begin{gathered} \mathrm{B} 2 \\ 03 \end{gathered}$	Magara，G．，Khan，F． R．，Pinti，M．，Syberg， K．，Inzirillo，A．and Elia，A．C．（2019）． ＂Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel（Mytilus edulis）．＂Journal of toxicology and environmental health． Part A 82（10）：616－ 625.	ムラサキイガイの酸化ストレスバイ オマーカーに対す るフルオランテン とポリエチレン製 またはポリヒドロ キシブチレート製 マイクロプラスチ ックの複合影響	$\begin{aligned} & \text { 二枚貝 } \\ & \text { (ム ラ } \\ & \text { サ キ イ } \\ & \text { ガイ) } \end{aligned}$	室内曝露実験	Flu	本研究は，ムラサキイガイに，ポリエチレン（PE）製及びバイオプラスチックであるポリヒドロキシブチ レート（PHB）製のマイクロプラスチック（MP）を， それぞれ単独またはフルオランテン（Flu）と同時に曝露し，消化腺と鰓の解毒酵素への影響を比較すること を目的とした。 ムラサキイガイに 96 時間 8 実験区（対照区，Flu 単独，PE 製 MP 単独，PHB 製 MP 単独，PE 製 MPと Flu，PHB 製 MPと Flu，Flu を吸着させた PE 製 MP， Fluを吸着させた PHB 製 MP）で MP や Flu に曝露 した。スーパーオキシドジスムターゼ（SOD），カタラ ーゼ（CAT），グルタチオンペルオキシダーゼ（ GPx ）， グルタチオン S－トランスファーゼ（GST），グルタチ オンレダクターゼ（GR）は消化腺と鰓の両方の組織に おいて Flu 及び MP の影響を受けやすいことが明らか となった。PHB 製 MP 単独の曝露により鰓のCAT， GST，消化腺のSOD，両方の組織のSeGPx の活性が低下した。複合曝露及び Flu を吸着させた MP の曝露 による生化学的反応は，PE 製 MP 単独及び PHB 製 MP 単独と同等であり，MPと化学物質の複合曝露の影響がないことを示唆した。

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
$\begin{gathered} \hline \text { B2- } \\ 04 \end{gathered}$	Pannetier，P．，Cachot， J．，Clerandeau，C．， Faure，F．，Van Arkel， K．，de Alencastro，L． F．，Levasseur，C．， Sciacca，F．，Bourgeois， J．P．and Morin，B． （2019）．＂Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches：Part I－ adverse effects on fish cell line．＂ Environmental pollution（Barking， Essex ：1987）248： 1088－1097．	砂浜で採取したマ イクロプラスチッ クに吸着した化学物質の毒性評価： パート I－魚の細胞株に対する悪影響	$\begin{aligned} & \text { 魚類 (ニ } \\ & \text { ジマス) } \end{aligned}$	$\begin{aligned} & \hline \text { 室内実験 } \\ & \text { (バイオ } \\ & \text { アッセイ) } \end{aligned}$		ニジマス肝細胞株（RTLW－1）を用い，2015年に世界中の様々な島の砂浜（6 地点；ポルトガル，バルミュ ーダ，チリ，グアム，ハワイ Oahu Island，ハワイ Big Island）で採取したマイクロプラスチック（MP）に吸着した汚染物質の毒性を評価した。 分析対象物質は，MP に関連のある残留性有機污染物質（POPs）である多環芳香族炭化水素（PAHs），ポ リ塩化ビフェニル（ PCBs ），ジクロロジフェニルトリ クロロエタン（DDTs）を対象とした。 また，バージン MP（新品のプラスチック）•B［a］P で人工的にコーティングされた MP•環境中で採取さ れたMPのジメチルスルホキシド（DMSO）抽出物を複数のバイオアッセイ（MTTアッセイ（MTT），エト キシレゾフィン－O－デエチラーゼアッセイ（EROD）， コメットアッセイ）で分析した。 砂中のMPはポリエチレンが優占的に存在し，次に ポリプロピレンが続いた。 バルミューダは PAHs が，ハワイ（Oahu Island） は DDTs が最も高い濃度で検出された。 バージン MPは毒性が観察されなかった。 MP 抽出物に曝露した細胞では細胞毒性は観察され なかった。一方，EROD 活性が誘発され，採取地点に よってその程度は異なったことから，抽出物中の汚染物質や添加剤が異なることが示唆された。コメットア ッセイの結果， 6 地点中 4 地点で DNA 損傷が観察さ れた。EROD 活性レベルと DNA 損傷率の変化は，MP抽出物の魚類の細胞株への毒性を示している。

番号	書誌情報	文献タイトル （和訳）	生物	実験形態	対象物質	主な内容
$\begin{gathered} \mathrm{B} 2 \\ 05 \end{gathered}$	Pannetier，P．，Morin， B．，Clerandeau，C．， Laurent，J．，Chapelle， C．and Cachot，J． （2019）．＂Toxicity assessment of pollutants sorbed on environmental microplastics collected on beaches：Part II－ adverse effects on Japanese medaka early life stages．＂ Environmental pollution（Barking， Essex ：1987）248： 1098－1107．	砂浜で採取したマ イクロプラスチッ クに吸着した化学物質の毒性評価： パートII－初期発達段階のニホンメ ダカへの悪影響	魚類（ニ ホンメ ダカ）	室内実験	B［a］P， MP 抽出 液	太平洋上の 3 つの島の砂浜で採取したマイクロプラ スチックに吸着した汚染物質の毒性影響を評価するこ とを目的とした。 バージン MP（新品の MP），人工的に B［a］P でコー ティングした MP，イースター島，グアム，ハワイで採取したMPの発生毒性を，ニホンメダカの胚と幼生 を用いて評価した。 MPの DMSO 抽出物をニホンメダカの胚•幼生曝露 した後，死亡率，艀化率，奇形，EROD 活性及び DNA損傷について調査した。 バージン MP の抽出物はどのエンドポイントについ ても毒性はなかった。B［a］Pを $250 \mathrm{ug} / \mathrm{g}$ コーティング した MP は高い胚死亡率（ $+81 \%$ ）•低い卵化率（ -28% ） といった致死効果，及び生体計測と遊泳行動の変化• EROD 活性上昇（ $+94 \%$ ）•DNA 損傷（ $+96 \%$ ）を含む亜致死効果を誘発した。 3 つの島で採取した環境中 MP はそれぞれ異なるポ リマー素材，汚染物質，毒性のパターンを示した。最 も高い毒性は，ハワイのMPの抽出液を曝露した場合 の体長と遊泳速度の減少及びEROD 活性と DNA 鎖切断の誘発に現れた。 本研究はMPに吸着した有機汚染物質の，初期発達段階の魚類に対する亜致死毒性を示した。

表 1．1－3 C－2：ゴミの取込み／曝露による生物への影響を調査した文献

番号	書誌情報	文献タイトル （和訳）	生物	主な内容
$\begin{gathered} \hline \text { C2- } \\ 01 \end{gathered}$	Baudrimont，M．， Arini，A．，Guegan，C．， Venel，Z．，Gigault，J．， Pedrono，B．，Prunier， J．，Maurice，L．，Ter Halle，A．and Feurtet ${ }^{-}$ Mazel，A．（2019）． ＂Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms （microalgae and filter－feeding bivalves）．＂ Environmental science and pollution research international．	北大西洋還流で採取したポ リエチレン製ナノプラスチ ックの淡水棲及び海棲生物 （微細藻類とろ過摂食性二枚貝）に対する生態毒性	微細藻類（淡水棲微細藻類，海棲珪藻類），二枚貝（夕 イワンシジミ）	ナノプラスチック（NP）の潜在的な毒性を明らかにするた め， 2 種の微細藻類（淡水棲藻類 Scenedemus subspicatus，海棲珪藻類 Thalassiosira weissiflogii）に 48 時間，1，10， 100，1，000，10，000 $\mu \mathrm{g} / \mathrm{L}$ の濃度で，ポリエチレン製 NP（PER）及び北大西洋還流（Gyre）で 2015 年に採取したポリエチレン から作られた NP（PEN）を曝露した。また，淡水棲でろ過摂食の二枚貝 Corbicula fluminea，に PER と PEN を 1000 $\mu \mathrm{g} / \mathrm{L}, ~ 48$ 時間曝露し，ろ過•消化能力の変化を調査した。 PER と PENは海棲珪藻類の細胞成長に影響を与えなかつ た。一方淡水棲藻類については，PENはすべての曝露区にお いて，PERは $10,000 \mu \mathrm{~g} / \mathrm{L}$ の曝露区で成長阻害が起こった。 PER またはPENの濃度が高い $(10,000 \mu \mathrm{~g})$ と，成長阻害の程度が大きかった。 海棲理藻類は淡水棲藻類よりもプラスチック汚染の影響を受けにくかった。 NP の曝露は二枚貝の万過摂食に影響を与えなかったが， PEN の曝露後は糞便及び偽粪が増加し，食物でない粒子に対 する拒絶メカニズムが示唆された。

番号	書誌情報	文献タイトル （和訳）	生物	主な内容

番号	書誌情報	文献タイトル （和訳）	生物	主な内容

番号	書誌情報	文献タイトル （和訳）	生物	主な内容
$\begin{gathered} \mathrm{C} 2- \\ 04 \end{gathered}$	Li，Q．，Sun，C．，Wang， Y．，Cai，H．，Li，L．，Li， J．and Shi，H．（2019）． ＂Fusion of microplastics into the mussel byssus．＂ Environmental pollution（Barking， Essex ：1987）252（Pt A）：420－426．	イガイの足糸へのマイクロ プラスチックの侵入	$\begin{aligned} & \text { 二枚貝 (ムラサキ } \\ & \text { イガイ) } \end{aligned}$	マイクロプラスチック（MP）が生物の体の一部に侵入する という仮説を検証するため，ムラサキイガイの足糸を対象と して調査した。 ポリスチレン製マイクロビーズ，ポリアミド製 MP（破片）， ポリエステル製繊維をムラサキイガイに曝露した結果，足糸中でこれらの MP が検出された。この結果から，MP は生物 の表面に付着するだけでなく，足系に入り込むことが確認さ れた。 足糸はイガイの生存に非常に重要であり，MPが入り込むと足糸の機能が損なわれる可能性がある。

| 書号誌情報 | 文献タイトル
 （和訳） | 生物 | 主な内容 |
| :--- | :--- | :--- | :--- | :--- |

番号	書誌情報	文献タイトル （和訳）	生物	主な内容

番号	書誌情報	文献タイトル （和訳）	生物	主な内容

