第8章 ダム管理設備

第1節 通 則

8-1-1 適用

この章は、ダム管理設備として設置する昇降設備、係船設備、堤内排水設備、流木止 設備、水質保全設備(以下「管理設備」という。)に適用する。

8-1-2 一般事項

1. 構造

管理設備は、設計図書に示された条件に対して確実な性能を発揮するとともに、耐久性に富み、保守管理が容易で安全な構造でなければならない。

2. 技術基準等

受注者は、設計図書において特に定めのない事項については、下記の基準等に準拠するものとする。これにより難い場合は、監督職員の承諾を得なければならない。なお、基準等と設計図書に相違がある場合は、原則として設計図書の規定に従うものとし、疑義がある場合は監督職員と協議しなければならない。

U,	乗莪がめる場合は監督職員と協議しなければなりない。	
(1)	土地改良事業計画設計基準・設計「ダム」	(農林水産省)
(2)	鋼構造物計画設計技術指針(水門設備編)	(農林水産省)
(3)	水門鉄管技術基準	(電力土木技術協会)
(4)	電気設備計画設計技術指針(高低圧編)	(農林水産省)
(5)	電気設備計画設計技術指針 (特別高圧編)	(農林水産省)
(6)	電気設備に関する技術基準を定める省令	(経済産業省)
(7)	電気設備の技術基準の解釈	(経済産業省)
(8)	電気技術規程 (JEAC)	(日本電気協会)

(9)電気技術指針(JEAG)(日本電気協会)(10)内線規程(日本電気協会)(11)日本工業規格(JIS)(日本規格協会)

(12) 電気学会電気規格調査会標準規格 (JEC) (電気学会) (電気学会)

(13) 電池工業会規格 (SBA) (電池工業会) (14) 日本電機工業会規格 (JEM) (日本電機工業会)

(15) 日本電線工業会規格 (JCS) (日本電線工業会)

(16) 公共建築工事標準仕様書 機械設備工事編 (国土交通省) (17) 昇降機技術基準の解説 (国土交通省)

8-1-3 使用材料

1. 主要部材

管理設備に使用する主要部材の材質に対する鋼板の板厚使用範囲及び余裕厚は、設 計図書によるものとする。

2. 防食対策

据付後に塗装が不可能な場合、その他保守管理の困難な部材については、設計図書 に示す防食対策を施すものとする。

8-1-4 構造計算及び容量計算

管理設備の構造計算および容量計算は、設計図書によるものとする。

8-1-5 銘 板

1. 一般事項

管理設備に名称、規格、設置年月、製作会社名等を明示した銘板を設けなければならない。

2. 銘板

銘板は、JIS Z 8304(銘板の設計基準)に準ずるものとし、仕様は下表を標準とする。

表8-1-1 銘板の標準規格

仕様	エッチング(凸式)銘板又は機械彫刻式銘板	
寸 法	$200 \times 315 (\text{mm})$, $250 \times 400 (\text{mm})$, $315 \times 500 (\text{mm})$, $400 \times 630 (\text{mm})$	
材質	黄銅板、青銅鋳物、ステンレス鋼板のいずれか	

8-1-6 操作要領説明板

1. 一般事項

機側操作盤の操作場所に操作の手順等を記入した操作要領説明板を見やすい位置に 設けなければならない。なお、操作要領説明板の仕様は下表を標準とする。

表8-1-2 操作要領説明板の標準規格

仕	様	機械彫刻式銘板
材	質	アクリル板(白)

8-1-7 付属工具

1. 一般事項

管理設備の保守管理に必要な付属工具を納入するものとする。

2. 付属工具の種類及び数量

付属工具の種類、数量及び格納方法は設計図書によるものとし、付属工具数量表を 工具納品時に添付するものとする。

第2節 昇降設備

8-2-1 一般事項

昇降設備は、設置環境を考慮し、昇降が安全、確実であるとともに運転操作、保守 管理が容易なものでなければならない。

8-2-2 エレベーター

1. 構 造

- (1) エレベーターは、ロープ式(機械室レス式含む)で、駆動装置、かご、乗場、昇降 路内機器及び操作制御設備等により構成する。
- (2) 駆動装置を上部据置形とする場合は、機械室を設けるものとする。
- (3) 昇降速度、積載質量、定員等は、設計図書による。
- (4) 耐震措置について、設計用水平震度等は設計図書による。

2. 駆動装置

駆動装置は、電動機、ブレーキ、減速機、駆動綱車(シーブ)、そらせ車等により構成する。

(1) 電動機

電動機は、エレベーター用とし、頻繁な始動停止に耐えられるものとする。

(2) ブレーキ

ブレーキは、動力が断たれたとき又は電気的安全装置が作動したときに確実に作動するものとする。制動力は、かごに積載質量の125%までの荷重を乗せて下降している場合でも、かごを減速、停止させ、その状態を保持する能力を有すること。

(3) 減速機

減速機に使用する歯車は、設計図書に示す動力容量の伝達に対してエレベーター 構造規格を満足する強度、硬度及び耐摩耗性を有し、油槽中に収めるものとする。

(4) 駆動綱車(シーブ)

駆動綱車(シーブ)は、主ロープに適応した特殊溝形を精密に機械加工したもので、その径は主ロープの直径の40倍以上とし、地震、かご揺れにより主ロープがシーブより外れない構造とする。また、耐震クラスに応じて、ロープガイドを設けるものとする。

(5) そらせ車

そらせ車は、主ロープに適応した特殊溝形を精密に機械加工したもので、地震、かご揺れにより主ロープがそらせ車より外れない構造とする。

(6) 主ロープ

主ロープは、JISG3525 (ワイヤロープ) 又はJISG3546 (異形線ロープ) に定める ものとする。

(7) 張力平衡用ばね

主ロープの端末引き止め部には、張力平衡用ばねを設け、各主ロープの張力が均 一になる構造とする。

(8) ロープ質量の補償装置

エレベーターには、巻上げロープの質量を補償する装置を設けるものとする。

3. かご

かごは、かご枠、かご床、側板、戸、天井、幅木、前柱、敷居、かご内機器等により構成され、かご構造については、エレベーターシャフト内の水滴、結露等による腐蝕、及びかご内への水分の侵入を防ぐ構造とする。

(1) かご枠

かご枠は、上梁、下枠、縦枠及び床枠から構成され、堅固な構造とする。

(2) かご床

床は質量に対して均一な強度面を有するものとし、不燃材を張るものとする。

- (3) かご内機器等
 - ①室内板は、鋼板製とし裏面に補強を施したもので、ひずみを除去したものとする。
 - ②天井に非常救出口を設ける場合は、設計図書による。
 - ③かご上には保守点検用として、かご上操作盤、手摺及びコンセント、保守運転用押しボタンスイッチ及び運転停止用安全スイッチを取付けるものとする。
 - ④かご室内には、かご内操作盤、照明器具、換気扇、乗過ぎ警報装置、インターホン、停電灯、かご内位置表示器、用途・積載質量及び最大定員を明示した標識、保護マットを備えるものとする。
 - ⑤かご内ボタンは、押しボタン点灯式で防滴形とする。
 - ⑥かご内照明は、常時にはAC100V を電源とする蛍光灯とし、停電時には蓄電池により点灯する非常灯を設けるものとする。
 - ⑦戸、側板、天井、幅木、前柱等は、ステンレス鋼板をヘアライン仕上げとするが、 これによらない場合は設計図書による。
 - ⑧通常運転に使用しないスイッチ類は、かご内操作盤のスイッチボックスに収納し、カバーによる鍵付とする。
 - ⑨その他、監視カメラ等を設ける場合は、設計図書による。

(4) かごの戸

かごの戸は、電動自動開閉式で静粛、かつ、円滑に開閉すること。また戸には、セフティシューを取付け、戸が閉まる際にセフティシューに物体が触れたときは直ちに反転して開くものとする。

4. 乗 場

乗場は、三方枠、乗場の戸、敷居、乗場ボタン、乗場位置表示器等により構成する。

- (1) 三方枠は、裏面に補強を施した鋼板製とし、ひずみを除去したものとする。
- (2) 乗場の戸は、電動開閉でかごの戸と連動すること。
- (3) 戸及び三方枠の防塵、防滴及び防錆には十分考慮するものとし、敷居は摩耗に耐えるものとする。
- (4) 乗場ボタンは、押しボタン点灯式で防滴形とし、カバープレートはステンレス鋼板にヘアライン仕上げ等を施したものとするが、これによらない場合は設計図書による。
- (5)乗場位置表示器は点灯式とし、かごの位置及び進行方向を示すもので、各階出入口の見やすい位置に取付けるものとする。

位置表示器は防滴形とし、カバープレートはステンレス鋼板にヘアライン仕上げ 等を施したものとするが、これによらない場合は設計図書による。 5. 昇降路内機器

昇降路内機器は、レール、レールブラケット、ガイドシュー、主索、釣合おもり等 により構成する。

- (1) レールは、エレベーター用T形レールを使用し、レールブラケットに取付けるものとする。
- (2) レールの継目は、ほぞ継ぎとし、継目板で接続しなければならない。
- (3) レールブラケットは、アンカーボルトでコンクリート構造物に強固に取付けるものとする。
- (4) レールガイドは、スライディングガイドシュー又はガイドローラによるものとし、 レール面への接触圧を調整できるものとする。なお、強制潤滑を行う場合は、設計 図書による。
- (5) 自動着床装置は、積載質量の範囲内で正確に着床できるもので、その精度は設計 図書によるものとする。
- (6) カウンタウエイトは、鋳鉄製又は鋼製で自重を容易に加減できる構造とし、鋼製 の枠又は通しボルト等により強固に組立てるものとする。
- 6. 身体障害者用付加仕様 身体障害者用付加仕様については、設計図書による。
- 7. 操作制御設備

エレベーターの運転方式は、乗合全自動方式とし以下の機器等を備えるものとする。

- (1)制御盤は、屋内閉鎖自立形とし、エレベーターの安全な運転に必要な電磁接触器、 継電器、進相コンデンサ、スペースヒータ、コンセント等を具備するものとする。
- (2) 電気機器には、防湿及び防滴対策を施すものとする。
- (3) 電気配線の施工範囲は、設計図書による。
- (4)電源、進行方向、運行位置、故障を監視できる監視盤を設ける場合は、設計図書 による。
- 8. 安全装置及び保護装置 エレベーターには、次の安全装置等を備えるものとする。
- (1) 上下限リミットスイッチ
- (2) ファイナルリミットスイッチ
- (3) 過速度安全スイッチ
- (4) 非常止め装置
- (5)緩衡装置
- (6) 戸開走行保護装置
- (7) 地震時等管制運転装置
- (8) その他火災時管制運転、停電時救出運転、故障自動通話装置等を設ける場合は、 設計図書によるものとする。
- 9. 予備品

予備品については、第8章8-7-3による。

10. 使用材料

エレベーターの主要材料は、設計図書による。

11. 保護対策

- (1) 昇降路は、湿度が極めて高く、絶えず結露を生じ、水滴が落下することがあるので、金属の腐食対策、電気機器の防水、防湿対策を施すものとする。
- (2) ドアインタロックスイッチ、リミットスイッチ、電話機箱、かご上部のスイッチ 等の器具類は、パッキン入りとする。

8-2-3 モノレール

1. 構造

- (1) モノレールは、ラック・ピニオン方式で、レール、駆動装置、搬器及び操作制御 設備等により構成され、これ以外の場合は設計図書による。
- (2) 走行速度は、設計図書による。
- (3) 用途、積載質量、定員等は、設計図書による。

2. レール

- (1) レールは、ベース板及びレールブラケットに溶接又はボルト接合する構造とする。
- (2) レールは、ラックギヤを配した構造で、搬器の走行に対して安全な強度を有するものとする。
- (3) ラックギヤは、騒音、振動を低減し、維持管理の容易なものとする。
- (4) レールブラケットは、アンカーボルトでコンクリート構造物に強固に取付けるものとする。

3. 駆動装置

- (1) 駆動装置は、搬器と一体となって駆動する構造で、電動機、減速機及び制動機を設けるものとする。
- (2) 駆動装置には、2系列以上の制動機を備え、停止状態を保持する能力を有するものとする。
- (3) 駆動台車、連結アームなどの金属部分は、耐食性に優れたものとする。
- (4) 電動機は、電磁ブレーキ内蔵の電動機とし、頻繁な始動停止に耐えられるものとする。

4. 搬器

(1)搬器枠

枠骨は、形鋼、鋼板により構成し、積載質量、内外衝撃に対して剛性を有すると ともに耐久性を考慮した安全構造とする。

(2) 搬器室

- ①搬器には、走行路の断面勾配の変化に対応する水平保持機構を具備するものとする。
- ②搬器床は、積載質量に対して均一な強度面を有するとともに滑り防止対策を施す ものとする。
- ③搬器内には、操作盤、照明器具、座席、安全ベルト、用途・積載質量及び最大定員を明示した標識、その他設計図書で明示したものを設けるものとする。

- ④搬器には、前照灯及び回転灯を設けるものとする。
- ⑤搬器には、始動時及び走行中に警報を発することのできるホーン又はブザーを設 けるものとする。
- ⑥昇降口は、手動式で開閉方法は、設計図書による。
- ⑦室内照明として常時 AC100V を電源とする蛍光灯等を設けるものとする。

5. 操作制御設備

(1)操作盤

- ①操作盤は、搬器室内と通廊内のステーションに設置するものとする。
- ②操作盤には、運転操作に必要な、表示器、操作スイッチ類を取付けるものとする。

(2)制御盤

- ①制御盤には、操作に必要な器具のほか、スペースヒータ、コンセント等を取付け るものとする。
- ②速度制御は、交流インバータ制御とする。
- (3) 監視盤監視盤を設ける場合は、設計図書による。

6. 安全装置及び保護装置

(1)減速位置検出装置及び指定位置検出装置

搬器を自動停止させる停止位置直前部及び停止位置には、リミットスイッチ又は センサを設け、搬器が確実に指定位置で自動停止するものとする。

(2) 過走防止装置及び緩衝装置

走行レール端末部には、リミットスイッチ、ファイナルリミットスイッチ並びに 衝突時の緩衝装置を設け、搬器を確実に停止させるものとする

(3) 非常停止装置

異常が生じたときは、搬器内外の非常停止スイッチを操作することにより、確実 に動力を遮断し搬器を停止させるものとする。

(4) 過速度安全装置

過速度安全装置は、設計図書で定められた速度で調速機が作動し動力を遮断し、 搬器を確実に停止させるものとする。

(5) 非常時停止装置

常用停止装置、非常停止装置のほかに、機械的に搬器を停止させることのできる非常時停止装置を設けるものとする。

(6) 搬器接触防止装置

搬器前後には、タッチセンサを取付け、走行中障害物に接触した場合には自動的 に停止する装置を設けるものとする。

(7) 各種インターロック

搬器内操作と呼出し操作の間には、各種インターロックを設けるものとし、その 内容は、設計図書による。

(8) 出入口ドアスイッチ

出入口の扉が閉じていない場合には、運転ができないインターロックを設けるものとする。

- (9) その他必要な安全装置等は、設計図書による。
- 7. 予備品

予備品については、第8章8-7-3による。

8. 使用材料

モノレールの主要材料は、設計図書による。

- 9. 保護対策
- (1) 昇降路は、湿度が極めて高く、絶えず結露を生じ、水滴が落下することがあるので、各機器には、金属の腐食、電気機器の防滴、防湿対策を施すものとする。
- (2) ドアインタロックスイッチ、リミットスイッチ、キャビン内のスイッチ及び給電 用設備等の器具類には、防湿、防滴対策を施すものとする。

8-2-4 インクライン

- 1. 構造
- (1) インクラインは、走行レール、巻上装置、搬器及び操作制御機器等により構成し、 これ以外の場合は、設計図書による。
- (2) 走行速度は、設計図書による。
- (3) 用途、積載質量、定員等は、設計図書による。
- 2. 走行レール
- (1) 走行レールは、ベース板及びレールブラケットに溶接又はボルト接合する構造で、 使用する材料は、設計図書による。
- (2) レールブラケットは、アンカーボルトでコンクリート構造物に強固に取付けるものとする。
- 3. 巻上装置
- (1) 巻上装置は、ワイヤロープにて搬器と連結しドラム、歯車、減速機、電動機、ブレーキ、フレーム等により構成する。
- (2) 巻上装置は、設計図書に示された条件を満足する強度及び能力を有するものとする。
- (3) ドラムは、溝付とする。
- (4) ブレーキは、2系列とする。
- (5) 停電時には、安全に停止し、復電後は停止状態を保持すること。
- 4. 搬器(台車)
- (1) 搬器枠

枠骨は、形鋼、鋼板により構成し荷重、内外衝撃に対して十分な剛性を有すると ともに耐久性を考慮した安全構造とする。

- (2) 搬器室
 - ①搬器床は、積載荷重に対して均一な強度面を有するとともに滑り防止対策を施す ものとする。
 - ②室内には運行操作盤、照明器具、座席、安全ベルト、用途・積載質重及び最大定員を明示した標識、その他設計図書に明示したものを設けるものとする。
 - ③搬器には、前照灯、回転灯を設け、走行中の安全を図るものとする。

- ④搬器には、始動時及び走行中に警報を発することのできるホーン又はブザーを設けるものとする。
- ⑤室内照明として常時 AC100V を電源とする蛍光灯等を設けるものとする。

5. 操作制御設備

(1) 操作盤

- ①操作盤は、搬器室内と通廊内のステーションに設置するものとする。
- ②操作盤には、運転操作に必要な表示器、操作スイッチ類を取付けるものとする。

(2) 制御盤

- ①制御盤には、制御に必要な器具のほか、盤内灯、スペースヒータ、コンセント等 を取付けるものとする。
- ②速度制御は交流インバータ制御とし、その設定は設計図書による。
- (3) 監視盤

監視盤を設ける場合は、設計図書による。

- 6. 安全装置及び保護装置
- (1)減速位置検出装置及び指定位置検出装置

搬器を自動停止させる停止位置直前部及び停止位置には、リミットスイッチ又は センサを設け、搬器が確実に定位置で自動停止するものとする。

(2) 過走防止装置及び緩衝装置

走行レール末端部には、リミットスイッチ、ファイナルリミットスイッチ並びに 衝突時の緩衝装置を設け、搬器を確実に停止させるものとする。

(3) 非常停止装置

異常が生じたときは搬器内外に非常手動停止スイッチを設け、確実に動力が遮断され停止するものとする。

(4) 非常時停止装置

ワイヤロープ切断等の非常時には、機械的に搬器を停止させることのできる非常 時停止装置を設けるものとする。

(5)搬器接触防止装置

搬器前後には、タッチセンサを取付け、走行中障害物に接触した場合に自動的に 停止する装置を設けるものとする。

(6) 各種インターロック

搬器内操作と呼出し操作の間には、各種インターロックを設けるものとし、その 内容は設計図書による。

(7) 出入口ドアスイッチ

出入口の扉が閉じていない場合には、運転ができないインターロックを設けるものとする。

(8) その他必要な安全装置等は、設計図書による。

7. 予備品

予備品については、第8章8-7-3予備品の規定によるものとする。

8. 使用材料

インクラインに使用する材料は、設計図書による。

- 9. 保護対策
- (1) 昇降路は、湿度が極めて高く、絶えず結露を生じ、水滴が落下することがあるので、各機器には、金属の腐食、電気機器の防滴、防湿対策を施すものとする。
- (2) ドアインタロックスイッチ、リミットスイッチ、搬器内のスイッチ等の器具類に は、防湿、防滴対策を施すものとする。

8-2-5 据付

- 1. 据付準備
- (1) 据付に当たっては、機器、部品の有無を確認するとともに、輸送による破損箇所、 不具合の有無を点検するものとする。
- (2)受注者は、据付に先立ち、据付基礎、壁床の貫通孔の形状及び寸法並びに箱抜き 差し筋の位置について据付に支障のないよう事前に調査しなければならない。
- 2. 据付作業
- (1)受注者は、据付に当たり据付基準点、副基準点、基準線を基に、図面寸法により 主たる設備その他各機器類の軸心を通る中心線、据付高さ等の確認を行うものとす る。
- (2) 副基準点を設定した場合は、据付完了後、移動又は変形しないよう強固な保護等を施すものとする。
- (3)受注者は、主たる設備その他の各機器類の据付に際して、各部の水平及び鉛直の 芯出し調整を行い、その結果について、監督職員の確認を受けるものとする。
- (4)据付に伴う溶接、塗装、コンクリート打設は、気象条件に留意して施工するものとする。
- (5) 据付に伴いコンクリート構造物及び建屋等をはつる場合は、監督職員の承諾を得るものとする。

第3節 係船設備

8-3-1 全般構造

係船設備は、インクライン方式の船舶昇降専用設備及び水位追従方式の浮桟橋係留 設備である。

1. インクライン方式

インクライン方式はワイヤロープ式で、昇降台車、走行レール、巻上装置、格納クレーン、浮桟橋等により構成する。

2. 水位追従方式

水位追従方式は、浮桟橋、ガイドレール等により構成する。

8-3-2 インクライン方式

- 1. 巻上装置
- (1) 巻上装置は、ワイヤロープにて台車と連結し、ドラム、歯車、減速機、電動機、 ブレーキ、フレーム等により構成する。
- (2) 巻上装置は、設計図書に示された条件を満足する強度及び能力を有するものとする。
- (3) ドラムは、溝付とする。
- (4) ブレーキは、2系列とする。
- (5) 巻上装置には、過巻上げ、過巻下げを防止するため、リミットスイッチを設ける ものとする。
- (6) 巻上装置には、休止装置(休止フック)を設けるものとする。
- (7) 停電時には、安全に停止し、復電後は停止状態を保持すること。
- 2. 昇降台車
- (1) 台車は、設計図書に示す荷重を積載できる構造で、車輪、フレーム船台により構成し、適用する技術基準等に示す強度と剛性を有する構造とする。
- (2) 車輪は、設計図書に示す荷重に対して適用する技術基準等に示す支持力を有し、 水中においても円滑に走行できるように考慮し、排障器及び脱輪防止装置を取付け るものとし、軸受は給油可能な構造とする。
- (3) 非常用制動機構は、ワイヤロープの切損に対応して自動的に昇降台車が停止するとともに、操作機構のトラブルによる停止不能の場合にも手動で停止できる機構を設けるものとする。
- (4) フレームは、形鋼及び鋼板を主材とした溶接構造とする。
- (5) 船台は、船底の形状に合わせて、確実に船底を支持できるものとする。なお、船 舶と接触するおそれのある箇所には、緩衝材を取付けるものとする
- (6) 台車上部には、手摺付踊場を設けるものとし、床板に滑り防止対策を施すものとする。
- 3. 走行レール
- (1) 走行レールは、普通軌条又は形鋼形成とし、うねり(上下、左右)、軸間寸法に 注意してアンカーボルトでコンクリート構造物に強固に取付けるものとする。
- (2) 走行レールの継目は、継目板をあて、ボルトで堅固に接続するものとする。
- (3) 走行レールの下限には、車輪止めを設けるものとする。
- 4. ワイヤロープ

ワイヤロープは、設計図書に示された条件に対して、十分な強度を有するものとする。

- 5. ロープ受ローラ
- (1) 走行路には、台車の移動に際して、ワイヤロープが直接、基礎コンクリートに接触しないようロープ受ローラを設けるものとする。
- (2) ローラ及び軸受は、耐水性を考慮するものとし、材料は設計図書による。